
Max van Meer, Cascaded Calibration of Mechatronic Systems via Bayesian Inference,
Accepted for 22nd IFAC World Congress, Yokohama, Japan, 2023, uploaded to Zenodo 6 April 2023

Cascaded Calibration of Mechatronic
Systems via Bayesian Inference

Max van Meer ∗ Emre Deniz ∗ Gert Witvoet ∗,∗∗

Tom Oomen ∗,∗∗∗

∗ Eindhoven University of Technology, Eindhoven, the Netherlands
(e-mail: m.v.meer@tue.nl).

∗∗ TNO, Dept. of Optomechatronics, Delft, the Netherlands.
∗∗∗ Delft University of Technology, Delft, the Netherlands.

Abstract: Sensors in high-precision mechatronic systems require accurate calibration, which is
achieved using test beds that, in turn, require even more accurate calibration. The aim of this
paper is to develop a cascaded calibration method for position sensors of mechatronic systems
while taking into account the variance of the calibration model of the test bed. The developed
calibration method employs Gaussian Process regression to obtain a model of the position-
dependent sensor inaccuracies by combining prior knowledge of the sensor with data using
Bayesian inference. Monte Carlo simulations show that the developed calibration approach leads
to significantly higher calibration accuracy when compared to alternative regression techniques,
especially when the number of available calibration points is limited. The results indicate that
more accurate calibration of position sensors is possible with fewer resources.
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1. INTRODUCTION

High-precision mechatronic systems rely on accurate po-
sition measurements to achieve high performance. At the
same time, an increasing number of applications requires
highly accurate position measurements in mass-produced
systems, e.g., satellite swarms for optical communication
(Gregory et al., 2010; Kramer et al., 2020), or segmented
mirror telescopes (Nelson, 2006).

The accuracy of position measurements relates to their
proximity to the actual positions, and precision refers
to repeatability. This paper considers sensors that con-
sistently exhibit position-dependent inaccuracies. These
repeatable sensor inaccuracies can be measured using a
test bed with a more accurate sensor, e.g., coordinate
measurement machines (Takamasu et al., 1996) or optics-
based test beds (Dresscher et al., 2019). When sensor
inaccuracies are measured, a model is fitted to compensate
for these inaccuracies through the process of calibration.

The test beds used to calibrate the position sensors of
mechatronic systems require calibration themselves, to a
standard regarded as an absolute measure of accuracy.
This is done by a third party such as a metrology institute
(Pendrill, 2009), or in-house using a highly accurate man-
ual instrument, e.g., theodolite (Krishna, 1996) or laser
tracking interferometers (Umetsu et al., 2005).

Due to this cascade of calibration steps, depicted schemat-
ically in Fig. 1, modeling errors in individual calibration
steps can stack and limit the achieved accuracy of the
sensor calibrated last. Two leading causes of modeling
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errors are as follows. First, calibration on manual, external
calibration instruments is time-consuming. While efforts
have been made to partially automate the comparison of
test bed sensor readings to accurate external readings (see,
e.g., Wu and Wang (2013)), these methods introduce addi-
tional development cost and complexity. Consequently, the
number of positions at which sensor readings are compared
with those of more accurate sensors is limited. Second,
some test bed locations may be unreachable to external
instruments due to geometry constraints, further limiting
the number of available calibration points.

In a parallel line of developments, the application of
Gaussian Process regression to mechatronic systems has
gained increased attention, see Poot et al. (2022); Ras-
mussen and Williams (2006), since it admits a highly
flexible model structure while taking uncertainty into ac-
count using Bayes’ theorem. By specifying a prior that
imposes properties such as smoothness and learning hyper-
parameters from the data, a model is obtained that yields
information not only of the expected function but also the
variance of this function space.

Although regression techniques such as lookup tables can
model individual functions well if the number of calibra-
tion points is large, it is shown in this paper that by taking
into account the variance of individual calibration models
using Bayesian inference, a significantly more accurate
model is obtained, even if the number of calibration points
is limited. Moreover, while sequential calibration using
Bayesian inference has attained attention in the context
of computer models (Jiang et al., 2020), the literature on
the cascaded calibration of position sensors is sparse.

Therefore, the aim of this paper is to find an accurate
mapping of position sensor readings to ‘true’ position
values, i.e., sensor n in Fig. 1, while taking the uncertainty
of the intermediate calibration model into account. The
contributions of this paper are as follows:
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Fig. 1. Schematic overview of the cascaded calibration
problem. An array of sensors is calibrated on each
other. Consequently, any imperfection in the calibra-
tion of the more accurate sensors is propagated down
the chain to the less accurate sensors.

C1: A method for cascaded calibration of position sensors
for mechatronic systems is developed. The approach
takes the model uncertainty of the first calibration
step into account to arrive at a more accurate esti-
mation in the subsequent calibration step.

C2: The effectiveness of the approach is demonstrated
through Monte Carlo simulations on a reproducible
case study, and it is shown that the developed cal-
ibration method yields significantly more accurate
models of the sensor offsets than alternatives such as
lookup tables. The results indicate that more accurate
calibration of mass-produced mechatronic systems is
possible with fewer resources.

This paper is structured as follows. First, the problem
description is given in Section 2. Next, the developed
approach to cascaded calibration is explained in Section 3.
Subsequently, simulation results are presented in Section
4, and finally, conclusions are drawn in Section 5.

2. PROBLEM DESCRIPTION

In this section, the problem description is given. First, a
motivating example is given. Subsequently, the calibration
problem is described, and finally, the problem is formalized
in terms of two regression problems.

2.1 Motivating example

A motivating example of cascaded encoder calibration is
shown in Fig. 2. The angular position sensor S1 of a
mechatronic system requires calibration, but the system
is too compact to be accessible by the manual calibration
instrument S3, e.g., a theodolite or autocollimator (Gao
et al., 2011). Hence, it is calibrated using a test bed with
sensor S2, which is optically aligned with the mechatronic
system, such that readings by S2 of the mechatronic
system can be compared with readings by S1 of the
mechatronic system. The test bed, in turn, is calibrated
using the manual calibration instrument, see Fig. 3.

The manual calibration instrument S3 cannot measure
all locations of the test bed because its frame physically
obstructs access. Moreover, accurate manual calibration
is labor-intensive, especially if high accuracy is required
over the entire 360o range of motion. Hence, the number
of available calibration points of S3 is limited.

Any imperfection in the calibration of the test bed to
the manual instrument decreases the accuracy of the
mechatronic system when it is calibrated on the test bed.
This propagation of modeling errors motivates the need to
take the uncertainty of the calibration model of the test
bed into account when calibrating the mechatronic system.

2.2 Notation

The following notation is used. Sensor Si, i ∈ {1, 2, 3},
is fixed to system i, where system 1 is the mechatronic
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Fig. 2. Motivating example. A mechatronic system with
angular position sensor S1 is optically linked for
calibration with a test bed, with its own sensor S2.
The test bed itself is calibrated using a highly accurate
manual measuring instrument S3. Sensors Si yield
different measurements yi of the same actual position
when they are aligned for calibration.
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Fig. 3. Sensor S1 ( ) is calibrated on a test best with
sensor S2 ( ), which, in turn, is calibrated on S3 ( ).
Since the systems are aligned during calibration, more
accurate sensors can observe the sensor inaccuracies
of less accurate sensors.

system, system 2 is the test bed, and system 3 is the
manual calibration instrument. Sensor Si yields measure-
ment yi ∈ R. All positions are defined w.r.t. the same
fixed reference frame. The true position of system i is
denoted by y∗i . When systems i and j are aligned for
calibration (as detailed in Assumption 2), it holds that
y∗i = y∗j , and hence, measurements yi and yj are two
different measurements of the same true position.

2.3 Cascaded calibration of sensors

Sensor Si is generally not perfectly accurate, i.e., yi ̸=
y∗i . Sensor inaccuracies can have multiple causes, e.g.,
manufacturing tolerances, mechanical wear, or imperfect
assembly. These inaccuracies to the true position are
position-dependent, expressed as follows:

y∗i = fi→i∗(yi), (1)
where fi→i∗ : R → R is a possibly nonlinear function, map-
ping inaccurate position measurements to true positions.
Assumption 1. Measurements yi of y∗i are corrupted by
zero-mean additive Gaussian white noise εi with vari-
ance σ2

n,i assumed small compared to the sensor inaccu-
racies. Long-term temporal changes in sensor-inaccuracies
are assumed negligible, and short-term changes are as-
sumed zero-mean, such that temporal effects are averaged
out over multiple observations at the same location, i.e.,
fi→i∗(yi, t) ≈ fi→i∗(yi).

If sensor Si of system i is not perfectly accurate, then these
inaccuracies are measured by a second system j, provided



Procedure 1 Cascaded calibration of S1 on S3 via S2

1: Align systems 2 and 3 and obtain a data-set D2 =
{ȳ2,k, ȳ3,k}N2

k=1. Use these observations of ȳ3 =

f2→3(ȳ2) to fit a function y3 = f̂2→3(y2).
2: Align systems 1 and 2 and obtain a data-set

D1 = {ȳ1,k, ȳ2,k}N1

k=1. Then construct D′
1 =

{ȳ1,k, f̂2→3(ȳ2,k)}N1

k=1 using the model of Step 1, and
use these ‘observations’ of f̂2→3(ȳ2) = f1→3(ȳ1) to fit
a function y3 = f̂1→3(y1).

that sensor Sj is more accurate, i.e.,∫ yj,max

yj min

|yj(y∗j )− y∗j |dy∗j <

∫ yi,max

yimin

|yi(y∗i )− y∗i |dy∗i . (2)

System j can only be used to measure the sensor inaccu-
racies of Si if systems i and j are aligned, i.e., y∗i = y∗j ,
because only then do they attempt to measure the same
true position. Therefore, the following assumption is made:
Assumption 2. When a pair (yi, yj) of sensor readings is
measured at a fixed point in time, it is assumed that mis-
alignment errors are negligible w.r.t. sensor inaccuracies:

|y∗i − y∗j |≪ |y∗i − yi|. (3)

Hence, both measurements (yi, yj) are assumed to describe
the same true position y∗i ≈ y∗j during calibration.

The manual calibration instrument S3 is the most accurate
sensor available, and therefore, y3 can effectively be used
as a proxy for y∗3 . The following function is then defined,
assuming systems 3 and i are aligned:

y∗3 = fi→3(yi), (4)
i.e., fi→3 describes the relationship between a sensor
reading yi and its ‘true’ position y∗3 ≈ y3.
Assumption 3. Each fi→3(yi), i ∈ {1, 2}, is bijective, i.e.,
any value of yi maps to one value of y∗3 and vice versa.

The aim is to obtain a model f̂1→3 of f1→3, describing the
sensor inaccuracy of S1, but importantly, f1→3 is never
observed directly. In other words, the manual calibration
instrument is not aligned with the mechatronic system
for calibration, for two reasons: (i) it is economically not
viable to perform manual calibration on many different
mechatronic systems with sensor S1, and (ii) the mecha-
tronic system may be built too compactly to be physically
accessible by a manual calibration instrument.

To prevent the need to calibrate S1 on S3 directly, the
test bed with S2 is first calibrated on S3. Subsequently,
S2 can calibrate many different mechatronic systems, each
with its own sensor S1. These two steps are detailed in
Procedure 1. When f̂1→3 is modeled offline through Pro-
cedure 1, it is used online to transform inaccurate position
measurements y1 to corrected measurements f̂1→3(y1).

Importantly, cascaded calibration requires making a fit on
another fit. Since measurements of S3 are labor-intensive
and time-consuming, the first model f̂2→3 might be based
on a limited amount of data (N2 ≪ N1), and consequently,
it may have a large variance. This potentially deteriorates
the accuracy of f̂1→3 w.r.t. the true f1→3.

In the next section, it is explained how the construction
of f̂1→3(y1) from data through Steps 1-2 of Procedure 1 is
framed as a series of regression problems.

2.4 Cascaded calibration through regression

To obtain a model f̂1→3 of the sensor inaccuracies of S1
that can be used for calibration, the following cascade of
regression problems is defined.
Problem 1. Consider Procedure 1, and suppose that data-
sets D1 and D2 are available. Parameterize the models as
y3 = f̂1→3(y1, α) and y3 = f̂2→3(y2, β), respectively, and
let their structures be fully determined by Hilbert spaces
K1 and K2 (Wegman, 2006). The aim is to obtain the best
possible fit of f1→3, even though f1→3 is not measured
directly, but instead by solving two sub-problems:

min
K1,K2

J =

∫ ymax
1

ymin
1

[f̂1→3 (y1, α
⋆)− f1→3(y1)]

2 dy1

ymax
1 − ymin

1


1
2

subject to

β⋆ = argmin
∥∥∥f̂2→3 (ȳ2, β)− f2→3 (ȳ2)

∥∥∥2
2
+

∥∥∥f̂2→3

∥∥∥2
K2

,

α⋆ = argmin
∥∥∥f̂1→3

(
ȳ1, α

)
− f̂2→3(ȳ2, β

⋆)
∥∥∥2
2
+

∥∥∥f̂1→3

∥∥∥2
K1

,

(5)
where ymin

1 and ymax
1 specify a range of positions where a

good model of the sensor inaccuracies of S1 is desired. Note
that solving for β⋆ and for α⋆ amounts to constructing the
fits of Steps 1 and 2 in Procedure 1, respectively.

The cost J cannot be evaluated in practice because S1 can
only be compared to S2, and S2 to S3, but not S1 to S3. On
the other hand, J can be evaluated in simulation, when
f1→3 is known. In the following sections, it is shown that
for a specific choice of the structure of f̂ through K1 and
K2, the cost J is significantly reduced, when compared
to conventional regression methods, indicating that more
accurate calibration is achievable.

3. CASCADED CALIBRATION VIA BAYESIAN
INFERENCE

In this section, the developed solution to Problem 1 is
explained. The key idea is to recognize that the two sub-
problems in (5) need to be posed in a coupled fashion.
If these problems were solved independently, then any
inaccuracy in f̂2→3(y2) that follows from the fact that y3
is only available at a limited number of positions is over-
confidently carried over to f̂1→2(y1).

Instead, the developed approach takes into account the
uncertainty of f̂2→3(y2) at locations y2 where no data of
y3 is available, through Bayes’ rule.

3.1 Calibration of S2

First, sensor S2 needs to be calibrated on sensor S3;
see the first sub-problem in (5). Given a limited num-
ber of observations of pairs (y2, y3) showing the relation
y3 = f2→3(y2), there is uncertainty in f̂2→3(y2, β) for
values of y2 that are far from calibrated locations. It is
explained next how this model uncertainty, or variance,
is computed explicitly so that it can be used for more
accurate regression in the next section. To this end, a
probabilistic viewpoint is adopted.

The model structure of f̂2→3(y2, β) is assumed to be

f̂2→3(y2, β) = ϕ2(y2)
⊤β, (6)



where ϕ2 : R → RD maps any y2 into some D-dimensional
feature space, with weights β. A Gaussian prior is assumed
on β, i.e.,

p(β) = N (β0,Σ2,p) , (7)
with mean β0 and prior variance Σ2,p ∈ RD×D. With
this model, the likelihood p(Ȳ3 | Ȳ2, β), or the probability
density of the observations given the parameters, is given
by

p(Ȳ3 | Ȳ2, β) = N (Φ2(Ȳ2)
⊤β,ΣȲ3

), (8)
where

Ȳi := [ȳi,1, . . . , ȳi,Ni ]
⊤, i ∈ {1, 2},

Φi(Ȳi) := [ϕi(ȳi,1), . . . ,ϕi(ȳi,Ni
)]⊤, i ∈ {1, 2},

(9)

and the variance of the observations is given by
ΣȲ3

= σ2
n,3I. (10)

The prior on β is conditioned on the data D2 to obtain the
posterior distribution, i.e., the probability of the parame-
ters given the data. From Bayes’ rule, it is known that

posterior =
likelihood × prior

marginal likelihood
, (11)

or specifically,

p(β | Ȳ3, Ȳ2) =
p(Ȳ3 | Ȳ2, β)p(β)

p(Ȳ3 | Ȳ2)
. (12)

The expression (12) describes the posterior distribution
of the parameters. For regression, rather, the predictive
distribution p(Y3 | Ȳ2, Ȳ3) = p(f̂2→3(Y2) | Ȳ2, Ȳ3) is of
interest. For arbitrary sensor positions Y2 ∈ RM2 , this
predictive distribution is computed as

p(f̂2→3(Y2) | Ȳ2, Ȳ3) =

∫
p(Y3 | Y2, β)p(β | Ȳ2, Ȳ3)dβ,

(13)
which is again a Gaussian with mean and variance

E
[
f̂2→3(Y2)

]
=m2(Y2) +K2(Y2, Ȳ2)·[

K2(Ȳ2, Ȳ2) + ΣȲ3

]−1
(Ȳ3 −m2(Ȳ2)),

cov(f̂2→3(Y2)) =K2(Y2, Y2)−K2(Y2, Ȳ2)·
[K2(Ȳ2, Ȳ2) + ΣȲ3

]−1K2(Ȳ2, Y2),
(14)

and the elements of Ki(Ȳi, Yi) = Ki(Yi, Ȳi)
⊤ ∈ RNi×Mi ,

Ki(Ȳi, Ȳi) ∈ RNi×Ni and Ki(Yi, Yi) ∈ RMi×Mi are ob-
tained from evaluating a kernel function ki(yA, yB) for
the corresponding values of arbitrary positions Yi and
measurements Ȳi. This kernel has the property that Ki =
Φ⊤

i Σi,pΦi, and thus relates to the chosen model structure
or prior. The prior mean is denoted by mi : RMi → RMi .
See Section 3.3 for details on the choice of ki and mi.

Crucially, (14) provides an analytic expression of the
covariance of f̂2→3(Y2), i.e., the uncertainty of the model,
illustrated in light purple in the left of Fig. 4. This
covariance is instrumental to obtaining a more accurate
estimate f̂1→3, as explained in the next section.

3.2 Calibration of S1

In this section, a model f̂1→3 is made, based on the
model of f̂2→3 obtained in the previous section. Since
sensor readings S1 can only be experimentally compared

with S2, but not to S3, the model of f̂2→3 is applied to
D1 = {ȳ1,k, ȳ2,k}N1

k=1 to obtain

D′
1 ={ȳ1,k, ŷ3,k}N1

k=1, (15)
where

ŷ3,n := f̂2→3(ȳ2,n),

Ŷ3 := [f̂2→3(ȳ2,1), . . . , f̂2→3(ȳ2,N1
)]⊤.

(16)

The key insight that distinguishes the regression approach
in this paper from traditional methods is that the variance
of the ‘observations’ ŷ3 = f̂2→3(ȳ2) ∈ D′

1, i.e., the predic-
tion of the model created in the previous section evaluated
at measurements ȳ2, is affected by the uncertainty of the
model. The covariance matrix corresponding to Ŷ follows
directly from this model uncertainty and is given by

ΣŶ3
:= cov(f̂2→3(Ȳ2)), (17)

which is computed directly through (14). By assuming a
Gaussian prior on f̂1→3 as before and conditioning on D′

1,
the predictive distribution p(f̂1→3) is a Gaussian with

E
[
f̂1→3(Y1)

]
=m1(Y1) +K1(Y1, Ȳ1)

⊤·[
K1(Ȳ1, Ȳ1) + ΣŶ3

]−1

(Ŷ3 −m1(Ȳ1)),

cov(f̂1→3(Y1)) =K1(Y1, Y1)−K1(Y1, Ȳ1)·
[K1(Ȳ1, Ȳ1) + ΣŶ3

]−1K1(Ȳ1, Y1).

(18)
Indeed, the posterior mean E[f̂1→3], shown in dashed blue
in Fig. 4, is a function of ΣŶ3

= cov(f̂2→3), shown in light
purple. Clearly, by taking into account the uncertainty of
the model f̂2→3, the model f̂1→3 is affected. It is shown in
Section 4 that this choice results in a more accurate model
f̂1→3 than when the uncertainty is ignored. This concept
is shown visually in Fig. 4, where the key observation is
that f̂1→3 (dashed blue) does not rely on ŷ3 (purple dots)
at locations where f̂2→3 has high variance (light purple),
but instead relies more on its prior E[y3] = y1.

Next, the choice of ki and mi, which determine the prior
of f̂i→j , is explained.

3.3 Selection of the model structure and hyper-parameters

In this section, the chosen model structure, or prior, is
elaborated, and it is shown how the hyper-parameters are
chosen automatically using data with empirical Bayes.

First, the choice of the prior is explained. It follows from
Equations (14), (18) that the model structure of f̂i→j
is uniquely determined by choice of kernel function ki,
defining the prior variance, and the prior mean mi.

For a function yj = f̂i→j(yi), the prior mean is
mi(yi) := E[yj ]. (19)

An intuitive choice is to pick mi(yi) = yi, which assumes
that in the absence of observations, sensor Sj is expected
to yield identical measurements as Si. If prior information
on the sensor inaccuracy is available, it can also be
incorporated into mi.

The prior variance, i.e., the range of possible functions that
f̂i→j can take, is determined by the kernel function. For
an overview of possible kernel functions, including, e.g.,
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Fig. 4. Example of cascaded calibration via Bayesian inference. Sensor readings y2 ( ) and y1 ( ) have different
position-dependent inaccuracies w.r.t. y3 ≈ y∗ ( ) while the systems are physically aligned to y∗. ȳ3 is measured
at two locations ( ) and a model f̂2→3(y2) ( , ) is fitted through these points. Next, this model is used to obtain
ŷ3 = f̂2→3(ȳ2) ( ,right) for many measurements ȳ2. Finally, a model f̂1→3 ( , ) is fitted on ŷ3. Because this
model takes the uncertainty of f̂2→3 into account, the model f̂1→3 ( ) partially disregards the data at locations
with high uncertainty, and instead relies more on its prior E[y3] = y1, leading to a more accurate fit to f1→3 ( ).

polynomial or sinusoidal model structures, see Duvenaud
(2014). In this paper, the attention is restricted to squared
exponential (SE) kernel functions of the form

ki(yA, yB) = σ2
f,i exp

(
− 1

2ℓ2i
(yA − yB)

2

)
, (20)

where hyper-parameters ℓi and σ2
f,i are the characteristic

length scale and the magnitude of the prior variance,
respectively. This model structure can be interpreted as
imposing smoothness on f̂i→j .

Hyper-parameters Θi = {ℓi, σ2
f,i, σ

2
n,i} can be chosen from

prior knowledge of the smoothness and magnitude of the
sensor inaccuracies and noise. Alternatively, these can be
learned from the data Di, also known as empirical Bayes,
by maximizing the log marginal likelihood, given by

log p(Yj |Yi,Θi) =− 1

2
Y ⊤
j K̃−1

i Yj

− 1

2
log

∣∣∣K̃i

∣∣∣− Ni

2
log2π,

(21)

with K̃i = Ki(Yi, Yi) + ΣYj
. This expression is maximized

with respect to Θ using an optimization algorithm for non-
convex problems, to find optimal hyper-parameters.

3.4 Summary

The complete algorithm to obtain estimates of y3 for
arbitrary measurements y1 is summarized in Algorithm
1. Note that after following steps 1-5, step 6 can be
repeated cheaply for any Y1, since the computation of
E[Y3] = E[f̂1→3(Y1)] through (18) is simply a matrix-
vector multiplication once the inverted matrix in (18) is
stored for future use.
Remark 1. The posterior means in (14) and (18) are
identical to the solutions of the sub-problems in (5), see
Rasmussen and Williams (2006, Section 6.2) for details.

4. RESULTS

In this section, the effectiveness of the developed cali-
bration approach is demonstrated through Monte Carlo
simulations. The simulation set-up is given first, and sub-
sequently, the results are presented.

Algorithm 1 Cascaded calibration via Bayesian inference
Require: Data-sets D1, D2, test points Y1 ∈ RM1 .
1: Specify kernel functions k1, k2 with initial hyper-

parameters Θi,0, see Section (3.3).
2: Find optimal hyper-parameters Θ⋆

2 by maximization
of log p(Ȳ3|Ȳ2,Θ2), see (21).

3: Compute E[Ŷ3] = E[f̂2→3(Ȳ2)] ∈ RN1 and cov(Ŷ3) =

cov(f̂2→3(Ȳ2)) ∈ RN1×N1 with (14).
4: Find optimal hyper-parameters Θ⋆

1 by maximization
of log p(Ŷ3|Ȳ1,Θ1), see (21).

5: Compute E[Y3] = E[f̂1→3(Y1)] ∈ RM1 with (18).
6: return E[Y3]

4.1 Monte Carlo simulation set-up

Suppose the sensor measurements yi obtained from sensor
Si during alignment (y∗1 = y∗2 = y∗3 = y∗) are described by
y3 = y∗ + ε,

y2 = y∗ +

Ns∑
k=1

ak sin (ω1,ky
∗) + bk cos (ω1,ky

∗) + ε,

y1 = y∗ +

Ns∑
k=1

ck sin (ω2,ky
∗) + dk cos (ω2,ky

∗) + ε,

(22)

with Ns = 10 and ε ∼ N (0, 10−8). The range of interest is
y∗ ∈ [0, 1] m, and hence, the values ymin

1 and ymax
1 in (5)

follow from (22).

For the Monte Carlo simulations, N = 12000 different
pairs of functions (22) are generated with ak, bk, ck, dk ∼
N (0, 10−4) and ωi,k ∼ N (0, 6). The data sets are collected
as follows. Data-set D1 is obtained by observing y2 for an
equally spaced grid of N1 = 100 values of y1. Subsequently,
y2 is observed for an equally spaced grid of 100 values of
y3, but then 10% of the data on either edge and 20% of
the data in the center is removed, leading to N2 = 64.
This represents a scenario where S3 cannot measure the
test bed everywhere because it is physically obstructed.

Algorithm 1 is followed for all N functions. The accuracy
of the resulting model f̂1→3 is then assessed by its cost J
in (5) and compared with two alternative techniques:
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Fig. 5. Normalized empirical probability density functions
(top) and cumulative density functions (bottom) of J
(N=12000). Algorithm 1 ( ) leads to a more accurate
fit f̂1→3 than Alternative 1 ( ), in which the variance
of the first model is ignored. Both methods perform
significantly better than Alternative 2 ( ), a lookup
table with linear interpolation.

Alternative 1: Algorithm 1 is followed, except that uncer-
tainty of the model f̂2→3 is approximated as ΣŶ3

=

σ2
n,3I, where σ2

n,3 is found by maximization of (21).
Alternative 2: A lookup table is made of f̂2→3 using D2.

Subsequently, a lookup table f̂1→3 is made using D′
1,

see (15). Linear interpolation is used between entries
in the lookup table.

4.2 Simulation results

The computational times of Algorithm 1 and Alternative
1 were less than five seconds each on a personal computer
for each of the N = 12000 simulations. The results of the
Monte Carlo simulations are shown in Fig. 5. The empirical
probability distribution functions are normalized to have
area 1. It is clear from the Fig. 5 that taking the model un-
certainty of f̂2→3 into account through Algorithm 1 leads
to a considerably better fit than when the uncertainty is
ignored (Alternative 1). Both kernel-based methods result
in more accurate models than a lookup table with linear
interpolation (Alternative 2).

The results indicate that Algorithm 1 is a suitable solution
to Problem 5, leading to better models of sensor inaccu-
racies than alternative approaches. With better models of
sensor inaccuracies, more accurate calibration is achieved.

5. CONCLUSION AND RECOMMENDATIONS

A cascaded calibration method is developed to accurately
model position-dependent inaccuracies of position sensors,
enabling more accurate calibration of mass-produced sys-
tems in less time. By taking into account the uncertainty
resulting from the first regression step using Bayesian
inference, more accurate calibration is achieved than con-
ventional methods such as lookup tables. The approach
is especially advantageous when the number of calibra-
tion points is limited. Moreover, since the model hyper-
parameters are tuned automatically using the data, the
procedure is convenient to implement in practice.

Future work is required to deal with cases when sensor
readings are not fully repeatable. In the current frame-
work, this is done by storing only average readings in the
data sets, but a proper Bayesian treatment of this spread
might further increase the achieved accuracy. Moreover,
future efforts will be aimed at experimental validation of
the method on the motivating example.
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