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Beyond Nyquist in Frequency Response Function Identification:
Applied to Slow-Sampled Systems

Max van Haren1, Leonid Mirkin2, Lennart Blanken1,3 and Tom Oomen1,4

Abstract— Fast-sampled models are essential for control de-
sign, e.g., to address intersample behavior. The aim of this
paper is to develop a non-parametric identification technique
for fast-sampled models of systems that have relevant dynamics
and actuation above the Nyquist frequency of the sensor,
such as vision-in-the-loop systems. The developed method
assumes smoothness of the frequency response function, which
allows to disentangle aliased components through local models
over multiple frequency bands. The method identifies fast-
sampled models of slowly-sampled systems accurately in a single
identification experiment. Finally, an experimental example
demonstrates the effectiveness of the technique.

I. INTRODUCTION

Systems that have actuation and dynamics above the
Nyquist frequency of the sensor, known as slow-sampled
systems, are becoming increasingly common in for example
vision-in-the-loop systems. As a consequence of the Nyquist-
Shannon sampling theorem [1], slow-sampled systems are
typically identified up to the Nyquist frequency of the slow-
sampled sensor. In sharp contrast, fast-sampled models of
systems are typically required for control design and perfor-
mance evaluation, e.g., for the use in evaluating intersample
performance [2].

Non-parametric frequency-domain representations are of-
ten used for performance evaluation and controller design of
linear time-invariant (LTI) systems. An example is manual
loop-shaping [3] and parametric system identification [4].
A common method for frequency-domain representation is
through Frequency Response Functions (FRFs). FRFs can
directly be identified from input-output data and are fast,
accurate, and inexpensive to obtain [5], [6]. Finally, FRFs
allow for direct evaluation of stability, performance, and
robustness [7].

The identification of fast-sampled models for slow-
sampled systems is challenging, since the maximum achiev-
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able identification frequency of traditional FRF identification
for LTI systems is limited by the Nyquist frequency of the
slow-sampled sensor. The key reason is that fast-sampled
outputs are aliased when sampled by a slow-sensor, resulting
in indistinguishable contributions in the output, and hence,
a fast-sampled model cannot be uniquely recovered [8]. As
a result, techniques for identifying fast-sampled models for
slow-sampled systems, that are required for control design
and performance evaluation, are necessary.

Important developments have been made in identifica-
tion techniques for slow-sampled systems, primarily in
continuous-time and multirate parametric system identifi-
cation. First, continuous-time system identification aims to
identify a continuous-time parametric model using input-
output data, as outlined in [9]. Typically, these methods
require intersample assumptions on the input signal, e.g.,
zero-order hold or bandlimited signals [10]. Second, para-
metric identification of slow-sampled systems are developed
and include methods for impulse response [11] and output-
error [12] model estimation. Lifting techniques, such as
using subspace [13], frequency-domain [14] or hierarchical
identification techniques [15], are also developed. These
methods focus on parametric identification, require intersam-
ple assumptions on the input signal and do not exploit fast-
sampled inputs, and consequently, do not disentangle aliased
components.

Although methods for identification beyond the Nyquist
frequency of slow-sampled systems have been developed, an
efficient and systematic methodology for single-experiment
FRF identification of fast-sampled models, that disentangles
aliased components with arbitrary input signals, is currently
lacking. In this paper, slow-sampled systems are identified
with excitation signals that cover the full frequency spectrum,
where aliased components are disentangled from each other
through exploiting the assumption of smooth behavior in the
frequency response of a system. Generally, this assumption
is at the basis of modern FRF identification, as seen in tech-
niques for LTI single-rate systems, such as Local Polynomial
Modeling (LPM) [5] or local rational modeling [16]. In fact,
LPM for LTI single-rate systems is recovered as a special
case of the developed framework. The key contributions of
this paper include the following.
C1 Identification of non-parametric fast-sampled models

for slow-sampled systems, by exciting the full frequency
spectrum and aliased components are disentangled from
each other by assuming smooth behavior in the fre-
quency domain (Section IV).

C2 Validation of the framework for identification of slow-
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Fig. 1. Identification setting considered for slow-sampled systems.

sampled systems in an experimental setup (Section V).
Notation: Fast-sampled signals are denoted by subscript

h and slow-sampled signals by subscript l. The N -points and
M -points Discrete Fourier Transform (DFT) for respectively
finite-time fast-sampled and slow-sampled signals are given
by

Xh(k) =

N−1∑
n=0

xh(n)e
−jΩknTs,h ,

Xl(k) =

M−1∑
m=0

xl(m)e−jΩkmTs,l

=

M−1∑
n=0

xh(nF )e−jΩknTs,l ,

(1)

with frequency bin k, sampling times Th and Tl, discrete-
time indices for fast-sampled signals n ∈ Z[0,N−1], slow-
sampled signals m ∈ Z[0,M−1] with integers Z and N,M the
amount of data points of the fast and slow sampled signals,
and generalized frequency variable

Ωk =
2πk

NTh
=

2πk

MTl
. (2)

The sampling times of the slow-sampled and fast-sampled
signals relate as Tl = FTh, with downsampling factor F ∈
Z>0. The complex conjugate of A is denoted as A and the
complex conjugate transpose as AH . The complement of sets
is given by A \B. The expected value of a random variable
X is given by E {X}.

II. PROBLEM FORMULATION

In this section, the problem that is considered in this paper
is presented. First, the identification setting is presented.
Finally, the problem addressed in this paper is defined.

A. Identification Setting

The goal is to identify a fast-sampled non-parametric
model Ĝ with sampling rate fh = 1

Th
, using the slow-

sampled output yl with sampling rate fl =
1
Tl

= 1
F fh, where

the open-loop control structure considered is visualized in
Fig. 1. The system G and the noise model H are LTI
Single-Input Single-Output (SISO) systems. The input-output
behavior of LTI SISO systems in the frequency domain is
given by

Yh(k) = G(Ωk)Uh(k) + TG(Ωk), (3)

with system transient term TG(Ωk) [5]. This reveals that a
single frequency of Yl is influenced by a single frequency
of Uh, also called the frequency-separation principle. The
measured slow-sampled output is a downsampled version of
the fast-sampled output as shown in Fig. 1, i.e.,

Yl(k) = SdYh(k) + Vl(k), (4)

with noise Vl(k) = H(Ωk)E(k), where E(k) is filtered zero-
mean white noise, and is assumed to be independent and
identically distributed. In time-domain, the downsampling
operation in (4) equates to Sdyh(n) = yh(nF ). By applying
the downsampling operation in the frequency-domain in (4),
the DFT of the slow-sampled output is given by [17]

Yl(k) =
1

F

F−1∑
f=0

Yh (k +Mf) + Vl(k). (5)

By substituting the input-output behavior of the fast-sampled
system G(Ωk) in (3), the slow-sampled output is given by

Yl(k)=
1

F

F−1∑
f=0

(G(Ωk+Mf )Uh(k+Mf)+TG(Ωk+Mf ))+Vl(k).

(6)

B. Problem Definition and Approach

The DFT Yl in (6), for a single frequency bin k, is
influenced by F frequencies of G and Uh. This is caused by
aliasing due to the downsampling operation. Hence, the fast-
rate system G(Ωk) can in general not be uniquely identified
with the slow-sampled output Yl for arbitrary inputs Uh.

The problem considered in this paper is as follows. Given
fast-sampled input data uh and slow-sampled output signal
yl with DFTs Uh and Yl shown in (4), identify a fast-sampled
model of G(Ωk) in the frequency-domain for bins k ∈
Z[0,N−1], i.e., up until the fast-sampled sampling frequency
fh, for the identification setup seen in Fig. 1. The approach
is developed in two steps.

1) Development of an intuitive idea in Section III for
identifying slow-sampled systems using a dedicated
input signal for a sparse frequency grid.

2) Development of the full approach in Section IV using
arbitrary input signals and full frequency grids, leading
to contribution C1.

III. INTUITIVE IDEA: IDENTIFICATION WITH SPARSE
FREQUENCY SPECTRUM

The first step in Section II-B is developed, where aliasing
is precisely traced for each input signal such that the slow-
sampled output Yl(k) is only influenced by a single fast-
sampled input Uh(k). This step is intended for conveying the
intuitive idea, leading to the full approach, i.e., the second
step in Section II-B, in Section IV.

The transient contribution TG = 0 in this section, meaning
that the transient is neglected to facilitate the development
of the intuitive idea, in that case (6) is equal to

Yl(k) =
1

F

F−1∑
f=0

(G (Ωk+Mf )Uh(k +Mf)) + Vl(k), (7)
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Fig. 2. Illustration of problem (top) and intuitive idea (bottom) for
identifying a fast-sampled model of G(Ωk) ( ) with slow-sampled
output Yl. The Nyquist frequency and multiples when sampling the output
a factor F = 3 slower is shown as ( ) . Top: Non-zero input
U(k+ iM) ∀i ∈ {0, 1, 2} and associated gain |G(Ωk+iM )| ( ) show
that the slow-sampled output Yl(k) ( ) is a summation as in (7),
resulting in F = 3 unknowns, but only 1 equation. Bottom: Non-zero input
U(k + i(M + 1)) ∀i ∈ {0, 1, 2} and associated gain |G(Ωk+i(M+1))|
( ) result in a single contribution of the summation in (7) influencing
Yl(k + i) ( ) by deliberately not exciting specific bins ( ). Hence,
the fast-sampled system G(Ωk+i(M+1)) can be uniquely recovered at
frequency bins k + i(M + 1).

showing that the slow-sampled output is a summation of the
baseband response for f = 0, and aliased components for
f ∈ Z[1,F−1]. Due to the summation of the baseband and
aliased contributions, the fast-sampled system can in general
not be uniquely recovered from slow-sampled output Yl. An
example is seen in the top of Fig. 2.

The key idea is that by designing the input signal Uh

such that the output at frequency bin k is only influenced by
a single contribution of the summation G (Ωk+Mf )Uh(k +
Mf) in (7), the fast-sampled system can be recovered for a
subset of all frequency bins. This means that input signals
of the form{

Uh(k +Mf) ̸= 0, f = i, i ∈ Z[0,F−1],

Uh(k +Mf) = 0, Z[0,F−1] \ i,
(8)

result in the input-output behavior

Yl(k) =
1

F
G (Ωk+iM )Uh(k + iM) + Vl(k), (9)

which shows that the summation disappears, and hence, the
fast-sampled system G can be uniquely recovered for the
frequency bins k+iM . The sparse set of excited frequencies
is from now on denoted by S, i.e., the signal in (8) can be
represented by Uh(k) ̸= 0 ∀k ∈ S and Uh(k) = 0 ∀k /∈
S. The general concept of identifying slow-sampled systems
with sparse multisines is shown in the bottom of Fig. 2. By
noting that Yl(k) = Yl(k+iM), Vl(k) = V (k+iM)∀i ∈ Z,
due to the M -periodicity of the DFT, (9) is rewritten as

Yl(k + iM) =
1

F
G (Ωk+iM )Uh(k + iM) + Vl(k + iM),

∀i ∈ Z[0,F−1], (k + iM) ∈ S.
(10)

An estimate of the system G is given by

Ĝ(Ωk+iM ) = F
Yl(k + iM)

Uh(k + iM)
,

∀i ∈ Z[0,F−1], (k + iM) ∈ S,
(11)

given that the excitation signal is designed such that the
output Yl(k) is only influenced by a single frequency of
Uh(k) according to (8). An example of a sparse multisine is
shown in Example 1.

Example 1 An example of a sparse multisine, that achieves
broadband excitation, is given by

Uh(k) ̸= 0, ∀k ∈ S,

S =

{
j + i(M + 1)

∣∣∣∣ i ∈ Z[0,F−1],
j ∈

{
0, F, 2F, . . . , 1

2M
} }

.
(12)

Essentially, the sparse multisines in Example 1 avoid inter-
ference of different frequency bands, and by appropriately
selecting the inputs a system estimate Ĝ is obtained at a
sparse set of frequencies in each frequency band, including
the bands beyond the Nyquist frequency.

The resulting estimate Ĝ(Ωk) is only obtained at the sparse
set of excited bins k ∈ S . By ranging i over multiple sets
of experiments in {0, 1, . . . F − 1}, the system Ĝ(Ωk) can
be uniquely recovered for the full frequency spectrum. As a
result, F experiments are necessary to identify the system,
which leads to a time-intensive procedure. In the next section,
a time-efficient single-experiment identification approach is
developed.

IV. IDENTIFICATION WITH FULL EXCITATION SPECTRUM

In this section, the approach is developed to identify
a fast-sampled model of G(Ωk) for all frequency bins
k ∈ Z[0,N−1], given slow-sampled outputs, therewith con-
stituting contribution C1. This is realized by exciting the
full frequency spectrum, where aliased contributions are
disentangled by exploiting a smoothness condition on G
and the transient. In contrast to Section III, where for each
frequency bin k the F unknowns in (7) were reduced to a
single unknown as seen in (10), in this section the amount
of equations are increased to F for each frequency bin k.
First, the method is presented. Second, a covariance analysis
is provided. Finally, the developed approach is summarized
in a procedure.

A. Identification of Slow-Sampled Systems with Full Excita-
tion Spectrum

The frequency response of the system G(Ωk) and transient
TG(Ωk) are assumed to be smooth, as is formalized in As-
sumption 1 and Assumption 2. The smoothness assumption
enables disentangling aliased components, and consequently,
the need for a sparse excitation signal in Section III is
relaxed.

Assumption 1 The frequency response of the fast-sampled
system G(Ωk) can be approximated in a local window r ∈
Z[−nw,nw], with 2nw + 1 the window size, as an Rth order



polynomial as

G(Ωk+r) ≈ G(Ωk) +

R∑
s=1

gs(k)r
s, (13)

Assumption 2 The summation of transients, seen in (6), is
assumed to be smooth in the local window r ∈ Z[−nw,nw],
i.e.,

1

F

F−1∑
f=0

TG (Ωk+r+Mf ) ≈ T (Ωk) +

R∑
s=1

ts(k)r
s. (14)

The assumption of a locally smooth system and transient
is commonly imposed and at the basis of modern FRF
identification, and is valid since G(Ωk) and TG(Ωm) are
functions with continuous derivatives up to any order [5],
[16]. Hence, the assumption of a smooth summation of
transients is equally reasonable, since the individual transient
contributions are smooth. By substituting the polynomial
models for G(Ωk) in (13) and for the transient in (14), the
slow-sampled output in (6) is rewritten with parameter vector
Θ and data vector K for the local window r as

Yl(k + r) = Θ(k)K(k + r) + Vl(k + r). (15)

The parameter vector Θ(k) ∈ C1×(R+1)(F+1) is given by

Θ(k) =
[
θG θg1 · · · θgR T (Ωk) t1(k) · · · tR(k)

]
,

(16)
with

θG =
1

F

[
G(Ωk) G(Ωk+M ) · · · G(Ωk+(F−1)M )

]
,

θgi =
1

F

[
gi(k) gi(k +M) · · · gi(k + (F − 1)M)

]
,

(17)
and data vector K(k + r) ∈ C(R+1)(F+1)×1 is given by

K(k + r) =

[
K1(r)⊗ U(k + r)

K1(r)

]
, (18)

with input vector

U(k + r) =


Uh(k + r)

Uh(k + r +M)
...

Uh(k + r + (F − 1)M)

 , (19)

where K1(r) =
[
1 r · · · rR

]⊤
and ⊗ denotes the

Kronecker product. Collecting the column vectors from (15)
in matrices for the window r ∈ Z[−nw,nw] gives

Yl,nw
= Θ(k)Knw

+ Vnw
, (20)

where Yl,nw ∈ C1×2nw+1, Knw ∈ C(R+1)(F+1)×2nw+1 and
Vnw

∈ C1×2nw+1 are constructed as

Xnw
=
[
X(k − nw) X(k − nw + 1) · · · X(k + nw)

]
. (21)

The fast-sampled system G(Ωk) and transient T (Ωk) are
uniquely identifiable for all k ∈ Z[0,N−1], in the presence of
aliasing and with a full excitation spectrum, as in Theorem 1.

Theorem 1 Given a frequency bin k, if M+1 > 2nw+1 ≥
(F + 1)(R+ 1) and the input vector U(k + r) from (19) is

|G
(Ω

k
)|

[-
]

k + r k + r +M k + r + 2M
Frequency bin [-]

Fig. 3. Illustration of identification of slow-sampled system that dis-
entangles aliased components by assuming local smoothness. True fast-
sampled system G(Ωk) ( ), and the local first-order parametric estimates
Ĝ(Ωk+r+iM ) = Ĝ(Ωk+iM ) + g1(k + iM)r ∀i ∈ {0, 1, 2} of the
developed approach ( ) . The values F = 3, R = 1 and nw = 3, when
neglecting the transient, result in 6 unknowns, i.e., the system estimates
Ĝ(Ωk+iM ) ( ) and the polynomial coefficients g1(k+iM), that determine
the slopes of ( ). Since nw = 3, there are in total 2nw+1 = 7 equations,
hence the system of equations in (22) can be solved for the 6 unknowns.

designed such that Knw
is of full row rank, an estimate of

the parameter vector Θ in the least-squares sense of (20) is
uniquely determined as

Θ̂(k) = Yl,nwK
H
nw

(
KnwK

H
nw

)−1
, (22)

and the fast-sampled model of system G(Ωk) is obtained by

Ĝ(Ωk) = F Θ̂(k)
[
1 01×((F+1)(R+1)−1)

]⊤
. (23)

Similarly, T̂ (Ωk) =
1
F

∑F−1
f=0 T̂G(Ωk+Mf ) from (14) can be

obtained.

Proof: The matrix inverse
(
KnwK

H
nw

)−1
uniquely

exists if
(
Knw

KH
nw

)
has full rank, which is achieved if the

rank of Knw
is equal to the row rank of Knw

and Knw
is

full row rank.
The interpretation of Theorem 1 is as follows. First, sufficient
data 2nw + 1 should be available, such that (22) leads
to a unique solution of the (R + 1)(F + 1) parameters,
hence 2nw + 1 ≥ (F + 1)(R + 1), which is satisfied by
design of wide matrix Knw

. In other words, by applying the
smoothness assumption, the estimation of the (R+1)(F+1)
parameters Θ̂ in (22) utilizes 2nw + 1 outputs in Yl(k + r).
This explains how the smoothness assumption allows to
disentangle F aliased contributions at a frequency bin k. Ad-
ditionally, no overlapping between windows k+r+iM ∀i ∈
Z[0,F−1] is allowed, otherwise Knw

is not full row rank, and
hence, M +1 > 2nw +1. Second, the system in (22) can be
solved uniquely if Knw

is full row rank. As a consequence,
aliased and transient contributions can be disentangled if
all inputs in the local window and at the aliased windows
are sufficiently ’rough’, that is formalized for a single lo-
cal window in [18]. For Theorem 1, this means that the
spectral difference |U(k + r1 + iM)− U(k + r2 + iM)| ̸=
0 ∀r1, r2 ∈ Z[−nw,nw], ∀i ∈ Z[0,F−1]. This condition is
fulfilled by, e.g., random-phase multisines [5]. The developed
framework is illustrated in Fig. 3.

Remark 1 Note that traditional LPM for single-rate LTI
systems is recovered as a special case of the developed
framework by setting F = 1.



Remark 2 The identified FRF by sparse multisines from
Section III can be interpolated at the non-excited frequency
bins k /∈ S, similar to [19], by seeing them as a special case
of the framework in this section. The condition on U(k+ r)
in Theorem 1 is inherently satisfied by sparse excitation.

B. Variance Estimate of the FRF

The developed framework enables estimation of the
variance of the identified FRF. The variance of Ĝ, that is
estimated using (22), is given by Theorem 2.

Theorem 2 The estimated variance of the FRF Ĝ that is
estimated using (23) is given by

var
(
Ĝ (Ωk)

)
≈ FSHSĈv(k), (24)

that is an estimate of the true variance of the identified FRF

var
(
Ĝ (Ωk)

)
= FE

{
SHS

}
CV (k) + FOint H

(
n0
w

M

)
,

(25)
with CV the variance of the noise and an estimate based on
measurements ĈV , noise interpolation error Oint H [5], and

S = KH
nw

(
Knw

KH
nw

)−1 [
1 0

]⊤
. (26)

Proof: The proof extends [5, Appendix 7.E] to F
frequency bands. In particular, by combining (20) and (22)
into

(Ynw
−ΘKnw

)S = Vnw
S,

Θ̂
[
1 0

]⊤︸ ︷︷ ︸
1
F Ĝ

−Θ
[
1 0

]⊤︸ ︷︷ ︸
1
F G

= Vnw
S,

Ĝ = G+ FVnwS,

(27)

the factor F appears in the difference between the true and
estimated system G and Ĝ.
The variance of the noise is equal to

CV (k) = var (Vl(k)) = E
{
Vl(k)V

H
l (k)

}
. (28)

An estimate of the noise variance is calculated by taking an
average over the local window, see [5, Appendix 7.B] for
technical details, i.e.,

ĈV (k) =
1

2nw + 1− (R+ 1)(F + 1)
V̂nw

V̂ H
nw

, (29)

with V̂nw = Yl,nw − Θ̂(k)Knw .

C. Developed Procedure

The developed approach is summarized in Procedure 1,
that links the main results in this paper.

V. VALIDATION

In this section, the developed method is validated on an
experimental setup, leading to contribution C2.

Procedure 1 (Identifying slow-sampled systems with full
frequency spectrum)

1) Construct uh such that it satisfies the requirements of
U given in Theorem 1.

2) Apply input uh to system and record the output yl.
3) Take the DFT of input uh and output yl using (1).
4) For all frequency bins k ∈ Z[0,N−1], do the following.

a) Construct matrices Knw and Yl,nw from (20)
using (18) and (21).

b) Compute parameter vector Θ̂(k) from (22).
c) Calculate the estimated FRF Ĝ(Ωk) and variance

var
(
Ĝ(Ωk)

)
using (23) and (24).

m1 m2

uh

yl

Fig. 4. Left: Picture of experimental setup used. Right: Schematic overview
of experimental setup.

A. Measurement Setup

The experimental setup is shown in Fig. 4. The setup
consists of two rotating masses connected via a rubber band.
The rotating masses are each actuated by a DC motor.
The input uh and output yl are respectively the torque and
rotation of the first mass. The second mass is virtually
suspended to the fixed world by a feedback controller. The
excitation signal for the developed approach that excites the
full frequency spectrum is a random-phase multisine and has
an root-mean-square value of 8.3 ·10−3 Nm. For comparison
purposes, the intuitive idea from Section III uses sparse
multisines with a root-mean-square value of 9.6 · 10−3 Nm
and are designed as in Example 1. A photograph and a
schematic overview of the test setup are seen in Fig. 4. The
settings used during identification are shown in Table I.

TABLE I
EXPERIMENTAL SETTINGS.

Property Variable Value

Fast sampling rate fs,h 120 Hz
Slow sampling rate fs,l 30 Hz
Downsampling factor F 4
Measurement time Tm 120 s
Window size nw 150
Polynomial degree R 2

B. Experimental Results

The fast-sampled system is identified using the developed
approach from Section IV. For comparison purposes, the
sparse multisine approach from Section III, a traditional
approach and using the fast-sampled output y, that is not
available for the other approaches, are used to identify the
fast-sampled system. The results for the developed, sparse
multisine and traditional approach are seen in Fig. 5, Fig. 6
and Fig. 7. The following observations are made
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Fig. 5. Identified FRF Ĝ(Ωk) for excitation by random-phase multisines
covering the full frequency spectrum from Section IV ( ) with covariance
estimate from (24) ( ) (right axis). The identified FRF based on fast-
sampled data is shown as ( ) and multiples of the Nyquist frequency of
the slow sensor as ( ) .
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Fig. 6. Identified FRF Ĝ(Ωk) with sparse multisines from Section III in
a single identification experiment ( ). The identified FRF based on fast-
sampled data is shown as ( ) and multiples of the Nyquist frequency of
the slow sensor as ( ) .

1) From Fig. 5 and Fig. 6, it is observed that the devel-
oped approach and the sparse multisines are capable of
identifying the dynamics above the Nyquist frequency
of the sensor. The developed approach of Section IV
that assumes smooth behavior in the frequency-domain
has significantly lower variance and a factor F higher
frequency resolution.

2) From Fig. 7, it is observed that exciting the system
with the full frequency spectrum and performing FRF
identification by Ĝ(Ωk) = Yl(k)/Uh(k) cannot ac-
curately identify the fast-sampled system G, due to
aliasing. Additionally, the estimated FRF is dominated
by a periodic behavior, which is explained because the
slow-sampled DFT Yl(k), that is M -periodic, is used
for all frequencies and aliasing is not accounted for.

3) From Fig. 5, the variance of the developed approach
that excites the full frequency spectrum repeats every
fl. For example, the increase of variance around 23 Hz
repeats at 53 Hz. This is explained because the variance
from (24) is determined with the estimated noise
variance Ĉv from (29), that uses the slow-sampled
data Yl, and hence, is periodic in fl. Additionally, the
mirroring effect that is observed, e.g., the increase of
variance at 23 Hz is mirrored to 7 and 37 Hz, is caused
because the DFT of Ĉv is symmetrical in 1

2fl.
VI. CONCLUSIONS

The results in this paper enable identifying FRFs of slow-
sampled systems where aliasing occurs. The key step is
assuming smooth behavior of the system FRF, which allows
to appropriately disentangle aliased contributions when ex-
citing the full frequency spectrum. Furthermore, covariance
estimates of the FRF are provided. Finally, the framework is
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Fig. 7. Identified FRF Ĝ(Ωk) for excitation by full frequency spectrum
random-phase multisines by performing Ĝ(Ωk) = Yl(k)/Uh(k) using the
same dataset as the full approach ( ) . The identified FRF based on fast-
sampled data is shown as ( ) and multiples of the Nyquist frequency of
the slow sensor as ( ) .

validated through experimental results. The dual case, where
outputs are fast-sampled and inputs slow-sampled, is trivial
by assuming appropriate interpolator behavior. The devel-
oped approach is a key enabler for closed-loop, multivariable
and parametric system identification and control design for
slow-sampled systems, such as vision-in-the-loop systems.
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