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Abstract— Industrial motion control systems, e.g. pick-and-
place tasks in semiconductor manufacturing equipment, require
precise positioning for achieving high machine throughput.
Linear encoders are the standard industrial sensors used
for position feedback due to their relatively low cost, high
resolution, and high operating frequency. The challenge is that
the linear encoders measure the positions at the points-of-
control of the equipment, e.g. motors, and not at the points-of-
interest, e.g. pick-and-place positions. The coupling between a
point-of-control and the point-of-interest is affected by external
disturbances such as mechanical misalignment of the product,
friction, and warping of the material, and linear encoders fail
to sense these disturbances. Vision-based sensing is a potential
alternative to achieve robust sensing and high-precision control.
However, vision processing has a long computational delay and
affects the machine throughput.

In this paper, we propose a multi-rate multi-sensor fusion
approach to improve the positioning accuracy of industrial mo-
tion control systems with different points-of-control and points-
of-interest. We present a multi-rate Kalman filter with bias
correction to fuse accurate but slow and delayed vision sensor
data with fast but less accurate linear encoder data for high-
precision position control. We validate the proposed method
in an evaluation framework by considering an industrial case
study of a semiconductor die-bonding machine. A design-space
exploration is done to evaluate the performance of the proposed
solution with respect to various relevant design parameters. The
effectiveness of the proposed solution depends on the type of
disturbances and vision processing delay. For the parameter
range under consideration, we achieve a positioning accuracy
of 1µm.

I. INTRODUCTION

Semiconductor manufacturing machines are common ex-
amples where high-precision and high-speed motion systems
are extensively used. The positions of the motors of these
systems are often sensed by linear encoders [1]. The encoders
are precise, but they measure the position at the point-of-
control at which the controller operates, e.g. motors, and
not at the points-of-interest, i.e., the actual position, e.g.
pick-and-place positions of the product, which are different
due to external disturbances. The coupling between a point-
of-control and the point-of-interest is affected by external
disturbances that these motion control systems may experi-
ence. An external disturbance occurs in industrial processes
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due to uncertain operating environments, e.g., ageing dete-
rioration, mechanical vibrations, elastic deformation of the
wafer surface, mechanical joint misalignment, and so on [2].
These disturbances cause displacements of the product being
handled, lead to positional errors in the process, and influence
the control performance, such as positioning accuracy. Linear
encoders do not typically detect such disturbances. Vision-
based object detection techniques offer a higher sensing
accuracy to measure the true position of the product at the
point-of-interest [3] and are a means to overcome the above-
mentioned sensing limitation. In recent years, many applica-
tions have shown the benefits of vision-based approaches
in control systems [4]. The major bottleneck in vision-
based (motion) control systems is the long computation
delay caused by the vision processing, leading to a long
sampling period. In recent literature, many approaches, such
as parallel and pipeline processing, have been reported to
reduce the vision processing time [5], [6], [7]. However,
achieving a short enough processing time to meet the high-
frequency requirements of a typical high-precision motion
control application is still challenging.

To address the aforementioned challenges, the key contri-
butions of this paper are:

1) A multi-rate multi-sensor fusion algorithm fusing ac-
curate but slow and delayed vision sensor data and
fast but less accurate linear encoder data along with
a bias correction solution to correct the effect of
external disturbances. As a whole, the proposed fusion
algorithm improves the position accuracy at a high
operating frequency by combining measurements from
a vision sensor with an encoder sensor, compared to
the accuracy achieved by using only encoder.

2) An evaluation framework to analyze and optimize
the performance of multi-rate multi-sensor industrial
motion control systems.

3) A design-space exploration to analyze the impact of
various relevant design parameters on the performance
of the proposed solution.

II. RELATED WORK

Vision-based perception and control is considered a
promising technology for industrial applications to achieve
robust positioning control. Many advanced industrial appli-
cations such as robotics and semiconductor manufacturing
consider vision-based control as a key technology. [8] pro-
poses the idea of using vision technology for fault diagnosis
of machine tools by detecting the machine surface texture.
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The approach is a useful solution for fault diagnosis of ma-
chine tools. [9] presents the multi-sensor fusion in advanced
driver-assistance systems (ADAS) applications using camera
sensors, radar, etc. In such applications, multiple sensors
are required to deal with uncertainty in the process. Sensor
fusion is used in such applications to produce more reliable
information from different sensors. However, [9] does not
demonstrate the effectiveness of the sensor fusion approach
considering the different operating rates of multiple sensors.
[8] presents vision technology for fault diagnosis but do not
use the vision-based solution in performance-critical closed-
loop systems. [10] summarizes the advanced digital twin
approaches for enhancing machine performance considering
smart integration of sensors for motion control applications.

In this paper, we present the idea of fusing vision and en-
coder sensors which operate at different rates to overcome the
effect of external disturbance in the process to improve the
positioning accuracy of the motion control system. We use an
advanced Kalman filter for this purpose. The Kalman filter is
a promising technique for handling multi-sensor information.
The Kalman filter is used to optimally estimate the state
based on measurements (with noise). It offers a recursive
solution to the discrete-data linear filtering problem [11]. The
filter computes optimal state estimations based on a discrete-
time state space model and state measurements in two parts,
i.e., prediction and update. The algorithm uses a predefined
linear model of the system to predict the state at the next
time instance and update for errors in the model using
the measurements. The prediction and update are combined
using the Kalman gain, which is calculated to minimize the
mean square error of the state estimate [12]. The optimal
estimation from the two different measurements is then used
as input to the control system.

III. MOTIVATION AND PROBLEM STATEMENT

We consider the wafer stage of a die-bonding machine as
the case study [2]. Fig. 1 (a) shows the simplified schematic
of the wafer stage of a semiconductor die-bonding machine.
The linear encoder measures the position of the motor
attached to the wafer table. The camera is mounted on top,
focusing on the wafer containing an array of dies placed
horizontally and vertically. In this work, we focus only on the
horizontal motion along the x-axis. Each die has a dimension
of 200µm× 200µm, and they are placed 20µm from each
other in an ideal scenario without disturbances. Therefore,
along the x-axis, the distance between the center of two
consecutive dies is 220µm, and a die has to move (from left
to right) 220µm to reach the target position. Fig. 1 (b) shows
the top view of the die on the wafer table with the current
die position and the target position where the die needs to be
positioned. Here, the point-of-control is the position of the
wafer table, which can be moved along the x-axis, and the
point-of-interest is the true position of the die in the wafer,
which is the same as the wafer table position without external
disturbances.

In the presence of external disturbances, the die position
may change and differ from the linear encoder measurement.

The idea is to use a camera focusing on detecting the true
position of the die and using that as feedback. Generally,
the linear encoder is light in terms of computation and
runs at a higher operating frequency, while vision-based
sensing operates at a slower rate due to a higher computation
time. The main question is how to fuse both sensors’ data
to improve the closed-loop positioning accuracy of the die
bonding machine.
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Fig. 1. (a) Schematic of a die bonding platform with camera and
linear encoder. (b) Current position without external disturbances and target
position.

A. System Model

The dynamic behaviour of a die-bonding machine can be
closely modelled by a second-order mass-damper system,
where the movement across one axis is represented by a
mass moving on a surface. The equation of motion for the
mass is given as follows,

f = m.a, (1)
−cvẋ+ fext = mẍ, (2)

mẍ =−cvẋ+ fext . (3)

m is the mass, f is the total force, a is the acceleration, cv
is the viscous damping constant, fext is the external force
applied by the motor, and x is the position of the die. The
continuous state-space model is obtained from the dynamics
in eq (3) considering two states - position x1 and velocity x2.
u is the input to the system which is external force fext . z is
the output measurement i.e., position. The state space model
of the system is given by:

ẋ = Ax+Bu, (4)
z =Cx, (5)

where A, B, and C are given by,

A =

[
0 1
0 −cv/m

]
, B =

[
0

1/m

]
, C =

[
1
0

]T

, (6)

Given that the encoder samples at a higher rate, we consider
the encoder sampling period hencoder as the base sampling
period. The corresponding discrete-time state-space model
with sampling period hencoder is as follows:

F = eAhencoder , G =
∫ hencoder

0
eAtdtB, (7)
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where F and G are the discrete-time state space matrices.
We further consider process and measurement noise wk and
vk respectively as follows:

xk+1 = Fkxk +Gkuk +wk, (8)
zk =Ckxk + vk. (9)

where xk =
[
x1,k x2,k

]T , wk ∼ N(0,Q), vk ∼ N(0,Re) for
encoder, and vk ∼ N(0,Rv) for vision. Q is the process
noise covariance matrix, Re is the encoder measurement
noise covariance and Rv is the vision measurement noise
covariance. Fk, Gk are the discrete-time state space matrices
at the kth sampling instance. Ck is the output matrix. Two
noise sources are independent i.e., E[wi,vT

i ] = 0. zk is the
(true) position of the die under consideration at the kth

sampling instance. Further, we denote the encoder and the
vision measurement at the kth sampling instance by ze,k and
zv,k, respectively. The control problem is to design a uk that
brings zk to rk (reference) at kth sampling instance.

B. Effect of External Disturbances

Fig. 2 (a) shows the first three dies in an ideal scenario
without any external disturbances. In ideal scenario, dies are
located equidistant from each other with a distance of 20µm.
The region of interest (RoI) of the camera focuses on the
first die. The center of the first die is located at position
z0 = 0µm without disturbances. The control problem is to
center the first die to the target position 220µm at the end
of the first iteration. The center of the second die is initially
located at the left of the first die at −220µm, and the third
die is positioned at −440µm. This way, there are several
other dies placed along the x-axis.

Fig. 2 (b) shows an example of a scenario when the
semiconductor die positions are disturbed due to external
disturbances. When external disturbance exists, the dies
are not equidistant from each other. In this case, the first
semiconductor die (along with all subsequent dies) on the
wafer stage is moved to the right by 50µm and z0 = 50µm.
This position inaccuracy of 50µm can not be measured by
the linear encoder since it only senses the position of the
wafer table, i.e., ze,0 = 0µm. However, the vision sensor is
able to measure the true position of the die position using
the captured images and vision processing algorithm, i.e.,
zv,0 = 50µm. Vision measurements are only available at a
lower rate. The idea is to fuse both vision and encoder data
to obtain an accurate and faster estimate ẑk of the true die
position to improve the closed-loop control performance. The
reference position rk should be adjusted accordingly to the
estimated position ẑk.

C. Multi-rate Multi-Sensor Fusion Problem

We consider two sensors – a linear encoder that operates
at a sampling period of hencoder and a vision sensor that
operates at a sampling period hvision. The two sensors operate
at different rates with hvision ≫ hencoder. Fig. 3 shows the
relative timing of multi-rate signals in the closed-loop die
bonder system. The relation between vision period and the
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 Position
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Fig. 2. (a) Ideal die positions without external disturbance i.e., ze,k =
0µm and zv,k = 0µm (b) Position of the semiconductor die with external
disturbance of 50µm i.e., ze,k = 0µm and zv,k = 50µm.

encoder period is captured by hv as follows:

hv =

⌈
hvision

hencoder

⌉
. (10)

i.e., the vision period is hv times longer than the encoder
period. The vision measurement starts with capturing the
image at instances k = s,s + hv . . . . The captured images
are processed to obtain position information zv,k using a
classical object localizer [13]. The worst-case processing
time of the object localizer is given by τvision. Further,
the vision measurement zv,k available at the instances k =
s+ τv,s+ τv +hv, . . . , where

τv =

⌈
τvision

hencoder

⌉
. (11)

That is, the vision measurement at k uses the image cap-
tured at τv sample time ago, and we denote such vision
measurement as zv,k−τv . The problem is to fuse the above
two sensor data and obtain an optimal estimation ẑk such
that it converges to the actual position zk. That is,

ẑk = f (ze,k,zv,k,τv,hencoder), (12)
s.t (zk − ẑk)→ 0. (13)

IV. PROPOSED MULTI-RATE MULTI-SENSOR ALGORITHM

A. Proposed sensor fusion algorithm

Fig. 3 shows the relative timing diagram of the proposed
sensor fusion algorithm based on the encoder and vision
measurements running at different rates. The base sampling
period is hencoder which is used in the control algorithm.
Therefore, we need an estimate ẑk at every hencoder. While
encoder measurement ze,k is available in each sample, the
vision measurement zv,k is available only once in every hv
samples, where hv is defined as shown in Eq. (10). Moreover,
the position information from an image captured at k is
only available at (k + τv) due to processing delay, where
τv is determined by Eq. (11). Based on the availability of
the sensor measurements, the algorithm (or samples) runs in
three modes as explained below.
Mode 1 (s+ ihv + τv < k ≤ s+(1+ i)hv) : In this mode,
only the encoder measurements ze,k are available. This mode
runs in the samples s+ ihv+τv < k ≤ s+(1+ i)hv as shown in
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Fig. 3. Timing diagram of multi-rate multi-sensor fusion algorithm.
τvision is the worst-case execution-time of the vision processing, img[s]
is the captured image, zv,s is the vision measurement, ze,s is the encoder
measurement, and ẑs is the multi-rate multi-sensor Kalman estimation output
at time instance s.

Fig. 3. Algorithm 1 shows the computation steps performed
in Mode 1. The algorithm starts in Mode 1 when the first
image frame is captured at k = 0. At k = 0, Steps 1-3
initialize P0, Re, Rv, Q, and x̂k(+) matrices where P is the
estimation covariance, Re and Rv are the measurement noise
covariance matrices for the linear encoder and vision sensor
respectively. Q is the process covariance matrix, and x̂k(+)
is the Kalman state estimate. We consider the following
initialization:

P0(+) =

[
var(x1,0) 0

0 var(x2,0)

]
, (14)

Re = σ
2
encoder, (15)

Rv = σ
2
vision, (16)

Q = σ
2
v ·G0GT

0 , (17)
x̂0(+) = 0. (18)

We consider the intrinsic noise level in the encoder as
σencoder = 5E − 9m, which is highly precise. However, as
already explained, the encoder cannot measure the external
disturbances, the presence of which further increases the
noise level depending on their nature. The noise level in
the vision sensor σvision = 3.5E −6m given that we consider
3.5µm accuracy per pixel of the image. The values of
σencoder and σvision are obtained from the specifications of
the industrial die-bonder machine. Q is the process noise
covariance matrix.

Step 4 computes the state estimation x̂k based on the
discrete-time model. Step 5 computes the uncertainty of the
prediction Pk using the recursive equation and considering the
process covariance matrix Q. Step 6 computes the Kalman
gain Kk using Pk and considering the encoder measurement
noise Re. Step 10 computes the Kalman state estimate x̂k(+)

based on the encoder measurement ze,k and x̂k obtained in
Step 4. Step 11 computes the update in prediction uncertainly
using the Kalman gain Kk. Step 12 computes the estimated
output ẑk. Additionally, in Steps 7-9 at the k = s+ ihv, we
initialize the correction matrix Mk = M0 = I which serves as
a correction term on the Kalman gain when the additional
information is received from the second sensor, i.e. vision
sensor. Mk is updated in other modes to update the necessary
correction before the use of vision measurement. Mk is used
in Mode 3 to determine the optimal Kalman gain K∗

k .

Algorithm 1 : Mode 1 (s+ ihv + τv < k ≤ s+(1+ i)hv)
1: if k = 0 then
2: Initialize: Pk(+), Re, Rv, Q, x̂k(+)
3: end if
4: x̂k+1 = Fkx̂k(+)+Gkuk
5: Pk+1 = FkPk(+)FT

k +Q
6: Kk = PkCT

k [CkPkCT
k +Re]

−1

7: if k = s+ ihv then
8: Mk = I
9: end if

10: x̂k(+) = x̂k +Kk[ze,k −Ckx̂k]
11: Pk(+) = [I −KkCk]Pk
12: ẑk =Ckx̂k(+)

Mode 2 (s+ ihv < k < s+ ihv + τv) : Mode 2 continues
after Mode 1. In this mode, the encoder measurements
ze,k are available while the vision processing is ongoing
using the images captured at k = s, s+ hv, · · · . Therefore,
vision measurements are not available in this mode. The
corresponding samples are s+ ihv < k < s+ ihv+τv as shown
in Fig. 3. Algorithm 2 shows the computation steps in Mode
2. All computation steps are the same as Algorithm 1 except
for Step 4. In Step 4, we update the correction matrix Mk,
which is intended to be used in Mode 3. This way, the latest
value of the correction matrix is used in Mode 3 when the
vision measurement is available.

Algorithm 2 : Mode 2 (s+ ihv < k < s+ ihv + τv)
1: x̂k+1 = Fkx̂k(+)+Gkuk
2: Pk+1 = FkPk(+)FT

k +Q
3: Kk = PkCT

k [CkPkCT
k +Re]

−1

4: Mk = (I −KkCk)FkMk−1
5: x̂k(+) = x̂k +Kk[ze,k −Ckx̂k]
6: Pk(+) = [I −KkCk]Pk
7: ẑk =Ckx̂k(+)

Mode 3 (k = s+ ihv + τv) : In this mode, at k = s+ ihv+τv,
both the encoder and vision measurements are available.
Algorithm 3 shows the computation steps performed in Mode
3. Step 5 calculates the new optimal Kalman gain K∗

k based
on the latest correction matrix i.e., Mk, the old covariance
matrix Pk−τv calculated at k−τv, and the measurement noise
covariance matrix in vision sensor i.e., Rv. Step 7 calculates
the state estimates x̂e based on only the encoder measurement
ze,k. Step 8 computes the extrapolated measurement z∗k based
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on the vision measurement zv,k−τv , i.e., position information
from the image captured at (k − τv). Step 9 computes the
optimal estimate x̂k(+) using z∗k , K∗

k and x̂e. Steps 10 and 11
calculate the update on Pk and the position estimate ẑk. Based
on the difference between the two sensor measurements, the
bias correction is performed in Step 6 which is explained in
the following.

Algorithm 3 : Mode 3 (k = s+ ihv + τv)
1: x̂k+1 = Fkx̂k(+)+Gkuk
2: Pk+1 = FkPk(+)FT

k +Q
3: Kk = PkCT

k [CkPkCT
k +Re]

−1

4: Mk = (I −KkCk)FkMk−1
5: K∗

k = MkPk−τvC
T
k [C

T
k Pk−τvC

T
k +Rv]

−1

6: ze,k = bias correction(ze,k−τv ,zv,k−τv ,ε)
7: x̂e = x̂k +Kk(ze,k −Ckx̂k)
8: z∗k = zv,k−τv −Ckx̂k−τv +Ckx̂k
9: x̂k(+) = x̂e +K∗

k [z
∗
k −Ckx̂e]

10: Pk(+) = Pk −K∗
k CkPk−τvMT

k
11: ẑk =Ckx̂k(+)

B. Bias correction

The bias correction is performed in Mode 3 in order to
compensate for the error in encoder measurement due to
disturbances. We consider a threshold ε based on the noise-
induced variance in the encoder and vision-based measure-
ments. We compare the encoder and vision measurements at
(k− τv), i.e., ze,k−τv and zv,k−τv . If their difference is more
than ε , we correct the encoder measurement ze,k by the vision
measurement zv,k−τv and the change in position observed in
the encoder measurements. The corrected encoder measure-
ment is considered in Mode 3 (i.e., in Step 6 of Algorithm 3).

Algorithm 4 : ze,k = bias correction(ze,k−τv ,zv,k−τv ,ε)

1: Input : ze,k−τv ,zv,k−τv ,ε = σencoder+σvision
2

2: Output : ze,k
3: if |ze,k−τv − zv,k−τv |> ε then
4: bk = ze,k−τv − zv,k−τv

5: else
6: bk = 0
7: end if
8: ze,k = ze,k −bk

C. Multi-rate multi-sensor estimation

From an estimation viewpoint, the state estimate x̂k is
computed using only the encoder measurement ze,k in Mode
1 and 2 (see Step 10 in Algorithm 1 and Step 5 in Algo-
rithm 2). However, the state estimation is performed using
both encoder measurement ze,k and delayed vision measure-
ment zv,k−τv in Mode 3. In Mode 3, the state estimation is
performed in two stages. In the first stage, the estimation
x̂e is obtained using only encoder measurement (see Step 7
of Algorithm 3). In the second stage, the vision-based state
estimation is performed using x̂e as an input (see Step 9

of Algorithm 3). Simplifying Steps 7-9 in Algorithm 3, we
obtain the following:

x̂k(+) = x̂k +(Kk −K∗
k CkKk)(ze,k −Ckx̂k)

+K∗
k (zv,k−τv −Ckx̂k−τv). (19)

In essence, in Mode 3 samples, the encoder-based estimate is
corrected by the vision-based estimates. Mode 1 and 2 have
only the encoder-based estimates.

Feed-
forward

PID + MotorReference -

Multi-rate
Sensor
Fusion Vision

Algorithm
MATLAB CoppeliaSim Plant

CameraEncoder

Fig. 4. Control system block diagram with Matlab and CoppeliaSim
components.

V. FEEDBACK AND FEED-FORWARD CONTROLLERS

The overall control system structure is illustrated in Fig. 4.
We use a proportional, integral, and derivative (PID) as
the feedback controller and an Iterative Learning controller
(ILC) as the feedforward controller in the closed-loop con-
trol system. The final control action is the combination of
feedback control ( f bk) and feed-forward control ( f f j) i.e.,
uk = f bk + f f j.

A. PID Controller

The discrete-time PID controller equation is

f bk = kpek + ki

N

∑
k=1

ekhencoder + kd

(
ek − ek−1

hencoder

)
, (20)

where f bk is the feedback control action, kp, ki, and kd
are the proportional, integral, and derivative controller gains
respectively. ek is the error signal,

ek = ẑk − rk, (21)

where rk is the reference at the kth sampling instance.

B. Feed-forward ILC

ILC method utilizes specific aspects of repetitive control
tasks to increase the control performance [14]. It exploits
the reproducible part of the tracking error (over multiple
identical actions) to design a compensation signal. Designing
the ILC for the considered case study uses the basis function
ILC as explained in [15], which is more suitable for repeating
varying trajectories. Consider the following equation of the
feedforward signal f f j,

f f j = k j
...r j + kar̈ j + kvṙ j + kC · sign(ṙ j)+ ksr j + kso, (22)

f f j = ψ jθ j, (23)
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where,

ψ j = [
...r j r̈ j ṙ j sign(ṙ j) r j 1], (24)

θ j = [k j ka kv kC ks kso]
T , (25)

and k j is jerk, ka is inertia, kv is viscous friction, kC is
Coulomb friction, ks is stiffness and kso is spring offset
coefficients to update the feedforward signal [2], where j
indicates jth iteration for the feedforward controller. We have
assumed kC as zero for the considered case study. Updates
of the feedforward parameters are given by,

θ j+1 = Q f ilterθ j +L f iltere j, (26)

Q f ilter = (ψT
j JTWeJψ j +W∆θ )

−1(ψT
j JTWeJψ j +W∆θ ),

(27)

L f ilter = (ψT
j JTWeJψ j +W∆θ )

−1
ψ

T
j JTWe. (28)

The feedforward addition for the jth iteration for each N
discrete sample is determined by the ψ j vector containing
the reference signals and θ j transposed vector containing
the feedforward parameters. The feedforward parameters in
θ j are updated after every iteration, based on the previous
parameter settings, the error signal e j for the jth iteration,
filters Q f ilter, and L f ilter. These filters are a product of the
third-order reference signals, a Toeplitz matrix J containing
the impulse response of the process sensitivity, and weight
matrices that determine the learning rate of the controller.
J is an N × N lifted representation [14], where N is the
number of samples in each ILC iteration. We ∈ RN×N is a
diagonal matrix to impose a weight on the error signal and
W∆θ ∈ RN×N is a diagonal matrix for weighting the rate of
change of the feedforward parameters. More information on
the implementation of the basis function ILC can be found
in the paper [2].

VI. PERFORMANCE EVALUATION FRAMEWORK

A. Plant/System model

We model the plant dynamics in the physics simulator
CoppeliaSim [16], [17]. In CoppeliaSim, we model the sys-
tem described in Section III. We model the x-axis movement
of the wafer table. The mass that models the wafer table
moves across a surface by applying a force as a control action
uk. The CoppeliaSim is interfaced with MATLAB using the
MATLAB remote API.

B. Sensors and Vision Processing

We explain the sensors used in the closed-loop framework
and the vision processing algorithm.
Linear Encoder: The linear encoder is used to measure
the position of the wafer table or the motor responsible for
moving the table.
Vision Sensor: Fig. 1 (a) shows the general schematic of the
semiconductor die bonder platform with the camera mounted
on top for measuring the true position of the die. Fig. 1
(b) shows the image captured by the camera. The image
processing algorithm uses the captured image to extract
the position information zv,k. The vision sensor precision is

3.5 µm per pixel.
Vision Processing: We use Hough transform [13] to obtain
the location of the object/die from the image. The algorithm
extracts the line segments and returns the x-coordinate of the
center point of a product within the RoI. The ratio between
the center point and full image width determines the absolute
position of the center point to the axis in the simulation setup.
Fig. 5 shows the processing steps. The input RGB image is
converted to a grayscale image. Subsequently, we apply the
Canny edge detection algorithm to detect the edges on the
grayscale image. Once we get the image from edge detection,
we pass it to the Hough transform algorithm which extracts
the line segments on the image, which is used to compute
the x-coordinate of the center point of a die.
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Fig. 5. Vision processing steps

C. Reference Generator

As shown in Fig. 4, the controller requires rk and its
derivatives in every sampling instance. We use the Advanced
setpoint generation toolbox [18] to obtain the trajectory for
a point-to-point movement within the given bounds. The
first reference component contains the position signal that
serves as input to the PID controller, and the other reference
components are used by the ILC for updating the feedforward
parameters.

VII. RESULTS

To evaluate the performance of the closed-loop control
system with the proposed multi-rate multi-sensor fusion
algorithm, we perform design-space exploration over various
relevant parameters and scenarios. The construction of the
error scenarios for the design-space exploration is explained.
We model two commonly occurring scenarios which are
explained in the following.

Fig. 6 (a) shows the scenario without external distur-
bances. For illustration, we consider 5 dies of dimension
200µm × 200µm placed with 20µm gap with each other.
The center of any two dies is 220µm away from each other.
We refer to the center of the die as the position of the die.
Along the x-axis, the first die is positioned at 0, the second
die is positioned at −220µm, the third die is positioned
at −440µm, and so on. We denote the deviation of these
(ideal) positions by ∆i where i = {1,2,3,4,5} for the 5 dies
under consideration. Without disturbances, ∆i = 0 as shown
in Fig. 6 (a). The controller is supposed to bring the first
die to the target position at 220µm by moving the wafer
table from left to right. Next, the second die moves another
220µm, and so on. Every iteration is of length 50ms. That is,
a die is supposed to reach the target position at the latest by
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50ms. Therefore, the 5 dies should reach the target position
one by one in 5 iterations to be completed by 250ms. In view
of this setup, we consider 2 scenarios under disturbances as
described in the following. In all these scenarios, we consider
two sensor settings: (i) hencoder = 0.125ms, hvision = 1ms (ii)
hencoder = 0.125ms, hvision = 8ms.

• Scenario 1: ∆1 = 20µm, ∆2 = 15µm, ∆3 = 10µm, ∆4 =
5µm, and ∆5 = 0µm as shown in Fig. 6 (b)

• Scenario 2: ∆1 = 0µm, ∆2 =−5µm, ∆3 =−10µm, ∆4 =
−15µm, and ∆5 =−20µm

3 2
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Fig. 6. (a) Scenario without external disturbances (b) Scenario 1: ∆1 =
20µm, ∆2 = 15µm, ∆3 = 10µm, ∆4 = 5µm, and ∆5 = 0µm.

Performance Metrics: We evaluate the closed-loop perfor-
mance of the control system considering the aforementioned
scenarios by (i) Steady-state error (SSE) with ek at the end
of each iteration, (ii) Mean absolute error (MAE) (µm) i.e.,
MAE = 1

N ∑
N−1
k=1 |(zk − ẑk)|, (iii) Settling time (ST) is the time

to reach within 2% of the target position. In this case, ek
should be in the range of ±1µm.
Performance evaluation: Fig. 7 presents the position of the
first die in iteration 1 in Scenario 1 with hencoder = 0.125ms
and hvision = 1ms. Here, hv = 8 and τv = 7 with the worst-case
execution time of the vision processing τvision = 0.875ms.
The disturbance ∆1 = 20µm. As shown in Fig. 7 (a), the
encoder doesn’t measure the disturbance and measures the
position as 0 at the start, i.e., ze,0 = 0. The vision mea-
surement starts with image capture at k = 0,8,16, · · · . The
vision measurements are available at k = 7,15,23, · · · with a
delay of τv. The first vision measurement zv,0 is available at
k = 7 or at 0.875ms. We obtain zv,0 = 19.1µm which is close
to the true position of 20µm. The output of the proposed
estimator ẑk should go to the true position with time as what
can be noticed from Fig. 7 (b). At the end of the iteration at
50ms, the encoder measurement ze,k still measures an error of
around 20µm (i.e., ze,k = 200µm) while the true position zk
converges to the target position of 220µm. As shown in Fig. 7
(a), the estimation ẑk experiences significant drift between 2
to 4ms since the bias correction is triggered. These results
demonstrate that the proposed fusion algorithm improves the
positioning estimates by integrating the vision and encoder
measurements as opposed to the case where only encoder is
used for position estimation.

Vision 
measurement

Image 
captured

Multi-rate multi-
sensor estimationTrue die 

position
Encoder 

Measurement

Reference 
Signal

Fig. 7. Scenario 1 with hvision = 1ms, and hencoder = 0.125ms: position of
the first die (a) zoomed in to 0-8ms (b) iteration 1: 0-50ms.

Fig. 8 shows the die position of the 5 dies under consid-
eration. Clearly, for all the dies, the estimated position ẑk is
converging to the true die position with the iteration time
of 50ms. This validates the effectiveness of the proposed
method. The encoder does not measure the disturbances
and hence, it shows a steady-state error at the end of each
iteration. Fig. 9 illustrates the true position (closely measured
by the vision measurement) along the x-axis after each
iteration. Dies are numbered 1,2,3,4, and 5 for illustration. In
Fig. 9, in the first iteration, the first die moves (220−20) =
200µm by the x-axis motion of the wafer table. At the end
of the first iteration (at 50ms), the second die also moved
200µm to the right and positioned at (−205+200) =−5µm.
The same holds for the subsequent dies, i.e., the third die at
(−430+200) =−230µm, the fourth die at (−655+200) =
−455µm and so on. In the second iteration, the camera
focuses on the position of the second die which starts at
−5µm and reaches the target position 220µm at the end of
the second iteration at 100ms. So, it requires the wafer table
to move 225µm to the right. Therefore, at the beginning of
the third iteration, the third die is at (−230+225) =−5µm,
the fourth die is at (−455+225) =−230µm and so on. This
motion continues for all the subsequent dies. The true die
positions (zk) and encoder measurements (ze,k) for each die
are marked in Fig. 8 to correlate the die position movement
explained in Fig. 9.

Table I shows the performance in all two scenarios.
The SSE values are smaller than 1µm in almost all cases,
although they would further vary based on the nature of the
disturbances. In all the cases, the closed-loop system settles
with 50ms iteration time. It is notable that the performance
in terms of SSE, MAE and ST degrades when hvision = 8ms
compared to the case with hvision = 1ms. Therefore, it is
desirable that the vision delay is reduced and the hvision gets
shorter.
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the five dies, iteration 1: 0-50ms, iteration 2: 50-100ms, iteration 3: 100-
150ms, iteration 4: 150-200ms, and iteration 5: 200-250ms.
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Fig. 9. Scenario 1 with external disturbances as the die position measured
by vision sensor.

VIII. CONCLUSIONS

We presented the multi-rate multi-sensor fusion algorithm
to improve the positioning accuracy of the industrial motion
control systems. We fused the accurate, delayed and slow
vision measurements with fast and noisy encoder measure-
ments to achieve high-accuracy and high-speed position es-
timates. Further, we proposed bias correction, ensuring error
correction due to the difference in measurement between the
two sensors. We designed the performance evaluation frame-
work for the entire closed-loop control system to evaluate
the applicability of the proposed solution for the different
scenarios by performing design-space exploration. More ex-
tensive design-space exploration with real implementation on
hardware would be an interesting follow-up direction.
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