
Machine Learning Techniques for Understanding
and Predicting Memory Interference in CPU-GPU

Embedded Systems
Alessio Masola, Nicola Capodieci, Benjamin Rouxel, Giorgia Franchini and Roberto Cavicchioli

University of Modena and Reggio Emilia, Italy
Department of Physics, Informatics and Mathematics

{name.surname}@unimore.it

Abstract—Nowadays, heterogeneous embedded platforms are
extensively used in various low-latency applications, including
the automotive industry, real-time IoT systems, and automated
factories. These platforms utilize specific components, such as
CPUs, GPUs, and neural network accelerators for efficient task
processing and to solve specific problems with a lower power
consumption compared to more traditional systems. However,
since these accelerators share resources such as the global
memory, it is crucial to understand how workloads behave
under high computational loads to determine how parallel
computational engines on modern platforms can interfere and
adversely affect the system’s predictability and performance.
One area that remains unclear is the interference effect on
shared memory resources between the CPU and GPU: more
specifically, the latency degradation experienced by GPU kernels
when memory-intensive CPU applications run concurrently. In
this work, we first analyze the metrics that characterize the
behavior of different kernels under various board conditions
caused by CPU memory-intensive workloads on a Nvidia Jetson
Xavier. Then, we exploit various machine learning methodologies
aiming to estimate the latency degradation of kernels based on
their metrics. As a result of this, we are able to identify the
metrics that could potentially have the most significant impact
when predicting the kernels completion latency degradation.

Index Terms—GPU, memory interference, embedded, machine
learning

I. INTRODUCTION

Heterogeneous embedded boards are nowadays commonly
used in widely deployed applications such as the automo-
tive industry, Internet-of-Things (IoT) systems and industrial
robotic applications. These platforms are characterized by
multicore CPUs that work in concert with massively parallel
accelerators, such as GPUs and/or other ASICs (Application
Specific Integrated Circuits). There is a knowledge gap in
research literature regarding the timing behavior that can be
observed when multiple accelerators in the same board access
shared memory hierarchies, such as the system DRAM. Previ-
ous work identified memory interference as a significant threat
to both performance and predictability [1]–[3]. In addition,
device vendors do not share the documentation containing
the necessary architectural details that would allow a system
engineer to understand and mitigate the effect of memory
interference on real-time workloads.

In this paper, we aim to analyze the memory interference
behavior by focusing on an embedded platform in which
multiple CPUs compete with an integrated GPU to access the
system DRAM. More specifically, we study the behavior of
applications that execute on the GPU side, commonly called
kernels, while memory-intensive applications are running on
the CPU side, accessing the main memory shared by both
processing unit type. We conduct our research using the well
known Nvidia Jetson Xavier embedded board [4]. Such a
board comes with a rich SDK for GPU-based application de-
velopment in which several profiling tools are made available
for the application developers. Such profiling tools are able to
inspect hardware counters and kernel execution metrics that
define the characteristics and behavior of GPU kernels. In
this context, we aim to find correlations and useful insights
about the relationship between these metrics and the slowdown
in the execution time experienced by GPU kernels while
varying the number of CPU co-running tasks that are accessing
DRAM with variable memory requirements. This constitutes
the starting point in defining methodologies able to account
for the magnitude of CPU memory interference and the GPU
kernel characteristics and provide predictions on the GPU
kernel execution time degradation due to DRAM interference.
Our contribution lies in the creation of methodologies to
create predictive model that predicts the interference a GPU
kernel can suffer from. To that end, we employ and combine
known machine learning (ML) techniques: in this work we
exploit Support Vector machines for Regression (SVR) [5],
Random Forest Regressor (RFR) [6] and Deep Neural Network
(DeepNN) [7]. Being able to understand, in a data driven
fashion, the important factors that are involved in memory
interference and thus predict kernel latency degradation are
paramount to derive an accurate response time analysis [8],
[9].

This paper is structured as follows:
In Section II, we present the related work. In Section III, we
provide a brief summary of the architectural characteristics
of a Jetson Xavier, the Nvidia CUDA API and the envi-
ronment set for the experiments is described in Section IV.
Subsequently, in Section V, we present the machine learning



methodologies that we used in our research to predict the
experienced slowdown of a GPU kernel starting from its
baseline metrics. In Section VI, we analyze which metrics
are the most important as the result of the training phases for
each individual ML technique. Finally, in Section VII we bring
conclusive remarks and open future work.

II. RELATED WORK

Interference on shared memory resources has been previ-
ously observed in both multicore CPUs [10]–[13], within the
GPU computing clusters [14], [15] and between CPU and GPU
in integrated SoCs [1], [3], [16]. Focusing on this latter topic,
several approaches have been proposed in order to mitigate
the effect of memory interference on both performance and
predictability. Ali et al. [17], on an Nvidia TX2 implemented
BWLOCK++, a mechanism that enables bandwidth reserva-
tion for the GPU kernels from CPU memory intensive activity
by exploiting software throttling, hence reducing the CPU
requested bandwidth. A similar, but specular mechanism has
been proposed in [18]: in this work, software throttling to
mitigate memory interference is used to protect CPU tasks by
GPU memory activity. Houdek et al. [19] explored these ideas
using hardware throttling: they analysed the memory controller
behaviour in an Nvidia TX1 using hardware counters. They
then implemented an hardware throttling mechanism for band-
width regulation based on PREM [20] memory scheduling
policies.
Both these characterization and mitigation research efforts
allow us to both quantify memory interference and design
schedulers accordingly; however, there is no work, to the best
of our knowledge, that is specifically aimed at understanding
and deriving a predictive model for CPU-GPU interference
by focusing on the kernels characteristics. Moreover, pre-
vious research efforts assumed that the requested memory
bandwidth is the best predictor for interference effects. We
argue that a more in-depth characterization of GPU kernels
can significantly widen our knowledge on interference. To
this purpose, we exploit fine grained kernels profiling and
machine learning (ML) methodologies. Previous work exists
on exploiting ML approaches for deriving predictive models
for latency deterioration caused by memory conflicts [21]–
[25]. Saeed et al. in [21] proposed a mechanism that is able to
predict the execution time of two co-running applications in a
multicore processor; their predictive model is based on hard-
ware performance events that have been previously selected
using the Spearman correlation coefficient. Also regarding
multicore CPU interference prediction and mitigation, Mishra
et al. [22] chose relevant metrics using linear feature selection.
Kim et al. [23] use a random forest regression model to
predict interference starting from data collected in an offline
profiling phase. As far GPU kernels are concerned, Ayub et
al. [24] investigate interference detection during concurrent
kernel execution on discrete GPU devices using different
ML techniques. Their goal is to determine if two kernels
are suitable for concurrent execution. Although effective, the
dataset feature selection for their models is rather coarse-

grained, as it is only based on four data items that refer to
the kernels’ launch configurations and register pressure. Since
the profiling tools provided in Nvidia embedded boards allow
the user to collect metrics, counters and other execution facts
in a much finer granularity, we argue that those are paramount
instruments to exploit. Such tools, although in a different
context, have been extensively used in Bramley et al. [25].
The authors conducted a detailed analysis in the field of road
vehicles and functional safety to determine whether bit faults
in SDRAM cause computational errors in GPU kernels. They
introduced the concept of Liveness, defined as the time in
which data was last written and used during the entire kernel
execution period, to evaluate the vulnerability of GPU memory
and potentially compute its failure rate. For this purpose, they
trained a neural network to predict the Liveness of a kernel,
utilizing 147 performance metrics extracted on a kernel set
using the nvprof tool. In our work, we take inspiration from
this latter work in the different context of CPU-GPU memory
interference prediction.

III. BACKGROUND

In this section, we briefly summarize the most important
architectural characteristics of a Nvidia Jetson Xavier, the
GPU programming model and the selected environment for
the experiments.

A. Nvidia Jetson Xavier Architecture

The Nvidia Jetson Xavier is a recently released embedded
platform based on a custom System-on-Chip (SoC) architec-
ture that combines multiple processing units and accelera-
tors to provide high performance at a relatively low power
consumption. Its internal components (Figure 1) includes a
64-bit ARM processor with 8-core CPU (Carmel) with a
clock speed of up to 2.26 GHz, a Volta integrated GPU
(iGPU) and other application specific accelerators. The CPU
complex is a custom-designed processor based on the ARM-
v8.2 specification. Internally, each pair of single cores is
grouped together in a cluster that shares an L2 cache of 2
MB, meanwhile, each cluster shares a L3 victim cache of
4 MB. The iGPU, has access to a Last Level Cache (LLC)
L2 of 512 KB. As visible in Figure 1, CPU and GPU share
the same system RAM, which is a 16GB LPDDR4: that is
the contention point and the platform subsystem on which we
focus our experiments.

B. Programming Models and Tools

CUDA is a programming model and an API developed
by Nvidia for general-purpose computing on GPUs. It al-
lows developers to harness the power of GPUs to accelerate
compute-intensive tasks, such as scientific simulations, image
processing, and machine learning. The CUDA API is used
to offload computations from the CPU to the GPU. This
approach can result in significant speedups compared to tra-
ditional CPU-based computing, making it a popular choice
for high-performance computing applications. The submitted
work, referred to as kernels, is then executed on the GPU by



Fig. 1: Nvidia Jetson Xavier architecture. We focus on the upper part of this figure, in which the connection between the CPU
complex and the integrated GPU is shown.

breaking down the computation into smaller tasks that can be
executed in parallel. These tasks are then distributed across
the Streaming Multiprocessors (SMs) of the GPU; these are
the processing clusters able to execute block of threads which
are themselves grouped into warps, which are the minimal
scheduling entity of a GPU following the SIMD paradigm.

In this paper, we use the Nvidia Nsight Compute utility
(ncu)1, which is a powerful performance analysis tool
designed for developers working on CUDA applications. It
provides a comprehensive set of performance metrics and
kernel execution statistics to help developers identifying
performance bottlenecks and optimizing their code for
maximum efficiency. With ncu, we can collect the
performance metrics, have access to GPU hardware (HW)
performance counter and other execution statistics able
to define a complete profile of the individual kernel
characteristics. ncu is a relatively novel addition to the
CUDA SDK as its predecessor (the well known nvprof) has
been recently deprecated [26]. Compared to its predecessor,
ncu allows the system engineer to collect many more metrics,
and it is able to autonomously derive for each metric the
maximum, minimum and average values observed during an
off-line profiling phase. Where applicable, the sum of the
observed measurements or percentage are also automatically
calculated by the tool. ncu provides close to 140000 metrics,
however, the user is able to quickly select or filter the metrics
he/she defines as interesting by interpreting the metrics
names. The tool uses the following naming convention:

unit (subunit?) (pipestage?) (interface) qta (qualifiers?)

While unit and subunit allow to specify the physical
or logical part of the GPU being profiled, the pipestage
refers to the pipeline stage. Additionally, the qta represents
the dimensional units and qualifiers is used to apply
additional filters or predicates to the counter. The primary
unit metrics are defined by counter_name.{sum, avg,

1https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

min, max}, where it is possible to have the sum, average,
minimum, and maximum. Other metrics also include ratios,
throughput, and other roll-up quantifiers. One relevant group
of counters is the Cycle Metrics, which report the number
of cycles within a defined unit clock domain. These metrics
include cycles elapsed, active cycles (during which the unit
was processing data), stalled cycles, and more.

IV. SETUP AND FIRST ANALYSIS

The initial profiling phase involves 14 different kernels with
varying computational and memory requirements, ranging
from basic operations to significantly more complex programs.
These kernels are both internally implemented and sourced
from known benchmark suites. We operated an initial clas-
sification on these kernels based on the amount of DRAM
bandwidth demand they require, so that we can identify three
categories: memory intensive, hybrid, and compute intensive.
Kernels with a bandwidth demand exceeding 70% are classi-
fied as memory intensive (M), when below 10% are considered
compute intensive (C), while the rest are classified as hybrid
(H). Some additional information on the kernels are presented
in Table I. This initial selection of kernels allow us to cover
the largest input space: some of the kernels will suffer from
interference as they require a lot of memory bandwidth to
compute, while the impact of the interference will be limited
on other kernels. This input space is therefore representative
enough of real world applications, and enhance the accuracy
of our model predicting the impact of interference on kernel
execution even before the actual estimation of latency dete-
rioration. We also understand that the more kernels are used
to build the input space of the predictive models, the more
confident our estimation will be. However, isolating a kernel
from its context (i.e. its surrounding CPU application) is not
a trivial task. Nonetheless, isolation is necessary in order to
study the effect of memory interference on the actual kernel
execution.

In this phase we analyze how metrics, read from hardware
counters, vary during the execution of individual kernels as the
intensity of CPU-generated interference changes. Such metrics



are obtained through the previously introduced ncu, that we
launch via command line concurrently with our test application
able to dispatch the previously described kernel set.

In order to generate variable CPU-side memory interference,
an open-source software designed for heterogeneous SoCs has
been set up, HeSoC-mark [16]2 (details in Section IV-B).
The Nvidia board under test is configured for maximum
performance (MAXN).

A. ncu and Kernels’ Performance Metrics

The ncu tool allows us to delve into the details of the
kernels’ behavior through GPU-side hardware counters. From
now on, readings from such counters will be referenced as
metrics. A GPU has several different metrics that enable the
analysis of memory and compute behavior in the context of
kernels’ completion latencies.

Due to the large number of available ncu profilable metrics,
in this study we focused on only 45 metrics out of the close
to 140000 available ones. The choice to profile only a limited
number of metrics is to avoid influencing the kernels execution
time with the profiler’s overhead. Moreover, the board tends
to crash when attempting to collect too many metrics during
a single profiling run. We operated this initial filtering by
following the naming convention explained in Section III-B;
specifically, we focused on three macro categories: a first
category that refers to GPU memory accesses (L2 and DRAM,
starts with lts); a second category that refers to metrics
related to compute instructions (starts with gr, gpu, smsp inst
or cycles) and a final category that summarizes branch
divergence (starts with smsp warp). The reason for choosing
these categories is because it has been shown to fit into what
is known as principal components for GPGPU performance
prediction and/or optimization [30], [31].

These profiled metrics are shown in Table II. Some of
the observed metrics have been coalesced into a single
one: this is because those metrics are combined to retrieve
known nvprof old metrics for which we were more familiar
with. For instance, metrics 11 and 13 from Table II map
to nvprof’s L2 read throughput and L2 write throughput
previous nomenclature. It is also important to note that the
chosen metrics might be correlated, or sometimes a specific
rollup metric (e.g. a sum rather than an average) carries more
information than the other: since it is impossible to know these
details in advance, we argue that the analysis performed in
Section VI will clarify these issues.

B. Experimental Setup

As mentioned earlier, in order to generate interference from
the CPU, we use the HeSoC-mark tool. Within the CPU
complex, each individual core is numbered from 0 to 7. We
designate core-0 as the core that submits work for individual
kernels to the GPU, while we use the remaining seven cores
(numbered from 1 to 7) to pin the processes that produce
significant memory pressure through a specific application in

2https://git.hipert.unimore.it/mem-prof/hesoc-mark

HeSoC-mark. Such an application is named meminterf, which
is able to generate high-memory traffic by iteratively executing
memcpy or memset POSIX-defined functions over buffers of
parametrized size. In our experiments, we set the buffer size
to 50 MB and elect to use memset. This will effectively lead
to the saturation the CPU-to-DRAM memory access traffic on
the global memory shared with the integrated GPU, as already
highlighted in previous research [1].

Tests of metrics and execution times for each individual
kernel were performed without interference from the CPU side
to generate a baseline. Then, we scaled up to a maximum of 7
tasks generating interference during the execution of individual
kernels. Each CPU task is therefore an instance of meminterf
pinned to a different core: this will lead to a linear scale of
the magnitude of CPU-side memory interference. Previous
research [16] measured that CPU-to-DRAM bandwidth for
sequential accesses in the Nvidia Xavier is equally partitioned
among sibling3 cores.

The results of these experiments indicate that the hybrid
(MVT) and memory-intensive (VADD) kernels experience
slowdowns due to the high intensity of global memory ac-
cesses generated by the CPU, whereas the fully compute-
intensive kernel (RAYTRACE) is not affected. As illustrated
in Figure 2, which displays partial data for three kernels, the
MVT kernel (Figure 2b) experiences the highest slowdown
among the 14 kernels used in the experiments, with a factor
of 2.19 when 7 meminterf processes are co-running. This con-
firms that M and H classified kernels experience a slowdown
in the presence of high intensity of shared global memory
accesses, and that DRAM bandwidth alone is not a good
predictor on latency deterioration; in fact, MVT experiences a
larger slowdown compared to VADD while requiring close to
20% less memory bandwidth.

V. METHODOLOGIES FOR SLOWDOWN PREDICTION

We aim to create a method that allows us to predict the
slowdown that a single kernel experiences as the number
of interferents varies. We can find in the literature different
examples of performance predictors that use ML technique
to find the predicted performance of a certain problem [32],
[33]. For this purpose, we use three different machine learning
methodologies for solving this regression problem:

• Support Vector machines for Regression (SVR) is
a machine learning algorithm used for predicting con-
tinuous numerical values. Unlike traditional regression
models, which attempt to minimize the error between
the predicted and actual values, SVR seeks to find an
hyperplane, in higher dimensional space, that best fits the
data while maximizing the margin between the predicted
values and the boundary. This methodology is able to
handle high-dimensional data with a small number of
training samples and its robustness to outliers makes it an
attractive choice for the interference prediction problem.

3Sibling CPU cores are couples of cores sharing the same L2, as shown in
Figure 1



TABLE I: Kernels used for analysis on Jetson Xavier architecture.

Kernel
Name

Data Size
In (MiB)

Data Size
Out (MiB)

Bandwidth
Demand (%)

Classification
(Memory. Hybrid, Compute) Origin

VADD 40 * 2 40 85.92 M Synthetic / In House Implementation
SAXPY 40 * 2 40 83.55 M Synthetic / In House Implementation
COPY 40 40 80.07 M Synthetic / In House Implementation

RAYTRACE - 1.5234 1.02 C In House Implementation
DXTC 0.003 + 0.5 0.25 13.70 H Cuda Samples
CONV 0.0001 + 40 40 21.34 H In House Implementation
MVT 64 + 0.01 * 4 0.01 * 2 60.38 H Polybench [27]

PF 0.5 + 255.5 0.5 50.73 H Rodinia [28]
DOITGEN 16 16 85.12 H Polybench
HOTSPOT 8 * 2 8 36.39 H Rodinia
NBODY 4 2 27.09 H Adapted from RoCm HIP Samples [29]
HISTO 24.3 0.003 55.93 H In House Implementation
ATAX 262.14 0.032 76.61 M Polybench
BFS 49.14 8.19 43.88 H Rodinia

(a) RAYTRACE (b) MVT (c) VADD

Fig. 2: Slowdown experienced by different kernels as the number of interferents varies.

• Random Forest Regression (RFR) is a machine learning
algorithm that combines ensembles of decision trees for
solving regression problems. The RFR algorithm works
by constructing an ensemble of decision trees, each of
which is trained on a random subset of the input features
and a random subset of the input data. Each tree is
built and trained using a randomized version of the
dataset. Once the trees are built, predictions are made by
averaging the predictions of each tree. An advantage of
RFR over SVR is its interpretability: each decision tree
in the ensemble can be visualized and analyzed, hence
allowing the system engineer to gain insights into the
underlying relationships between the input variables and
the output variable.

• A Deep Neural Network (DNN) for regression is a type
of machine learning algorithm that is used to predict
continuous numerical values. With DNN for regression
the input data is passed through a series of layers,
each consisting of interconnected neurons, to produce a
prediction.

A. Training and Test
In order to train machine learning methods, a dataset of

examples is used, consisting of X that defines the charac-
teristics of an example, and Y that defines the values to
be predicted. As a set of values X , we use all 45 metrics
related to the baseline of the entire set of 14 kernels and
the number of interferent processes (ranging from 0 to 7)

co-running during the execution of each kernel. As a value
Y to predict, we use the corresponding slowdown that each
individual kernel experienced during the preliminary analysis
(Section IV). Taking into account the small number of usable
experiments (112 cases) available for training, we trained the
models by splitting the examples into a training set of 85% and
the remaining 15% as the test set. The best hyper-parameters
for the models were determined using Optuna [34]. When
we talk about hyper-parameters we are talking about all those
quantities that are not changed during the training phase, but
set upstream by the user.

During the initial training phase, sub-optimal results were
produced due to the initial distribution of Y being unevenly
distributed and with a large number (61) of slowdown cases
≤ 1.1. Therefore, to achieve good results during training,
we removed 60% of slowdown values (36) that were below
1.1, resulting in a total of 76 cases with the corresponding
distribution shown in Figure 3.

To evaluate the predictive models with never seen cases
during the training phase, we created a parameterized kernel
based on MVT, that we name PARKERNEL. We chose MVT
as it was the kernel that experienced the highest slowdown
during the profiling phase. PARKERNEL is governed by two
parameters (p0 and p1), hence each couple ⟨p0, p1⟩ allows us
to consider kernels showing significantly different behaviors,
as detailed in Section V-B. Subsequently, we use different
models for predicting the slowdown by evaluating them on the



TABLE II: Metrics profiled for each kernel.

N° Metrics Description
1 gpu cycles active.avg number of cycles where GPU was active
2 gpu time active.avg total duration in nanoseconds
3 gr cycles active.avg number of cycles where GR was active
4 l1tex t bytes pipe lsu mem global op st.sum.per second number of bytes requested for global loads (per seconds) - Efficiency
5 l1tex t sectors pipe lsu mem global op ld.sum number of sectors requested for global loads
6 lts t sector hit rate.pct proportion of L2 sector look-ups that hit (hit rate)
7 lts t sectors.avg.pct of peak sustained elapsed number of LTS sectors ( L2 utilization)

8 lts t sectors aperture sysmem op read.sum number of LTS sectors accessing system memory for reads
(system read bytes)

9 lts t sectors aperture sysmem op read.sum.per second number of LTS sectors accessing system memory for reads
(system memory read throughput)

10 lts t sectors op read.sum.per second number of LTS sectors for reads

11
lts t sectors op read.sum.per second +
lts t sectors op atom.sum.per second +

lts t sectors op read.sum.per second
L2 read throughput

12 lts t sectors op write.sum.per second number of LTS sectors for writes

13
lts t sectors op write.sum.per second +
lts t sectors op atom.sum.per second +

lts t sectors op read.sum.per second
L2 write throughput

14 ltc cycles elapsed.{avg, sum} number of cycles elapsed on LTC {average, sum}
15 lts cycles active.{avg, max, min, sum} number of cycles where LTS was active {average, maximum, minimum, sum}
16 lts cycles elapsed.{avg, sum} number of cycles elapsed on LTS {average, sum}
17 lts d sectors.{avg, max, min, sum} number of sectors accessed in data banks {average, maximum, minimum, sum}
18 lts d sectors fill sysmem.{avg, max, min, sum} number of sectors filled from system memory {average, sum, minimum, maximum}
19 lts t bytes.{avg, max, min, sum} number of bytes requested {average, sum, minimum, maximum}
20 lts t request hit rate.pct proportion of L2 requests that hit
21 lts t request hit rate.ratio ratio of the proportion of L2 requests that hit
22 lts t requests.{avg, max, min, sum} number of LTS requests {average, maximum, minimum, sum}
23 smsp cycles active.avg.pct of peak sustained elapsed SM efficiency
24 smsp inst executed op global ld.sum instruction executed for global loads
25 smsp inst executed pipe lsu.avg.pct of peak sustained active Load Store Unit (LDST) utilization
26 smsp warp issue stalled dispatch stall per warp active.pct proportion of warps per cycle

27 smsp warp issue stalled dispatch stall per warp active.pct +
smsp warp issue stalled misc per warp active.pct stalls for other reasons

28 smsp warp issue stalled long scoreboard per warp active.pct stalls for memory dependency

generated kernels. For each models, we evaluate the minimum,
maximum, average and absolute average of the percentage er-
ror (real-performance versus predicted-performance) observed
during the prediction.

Fig. 3: Slowdown distribution of the 14 kernels.

B. A Parameterized Kernel: PARKERNEL

The parameterized kernel represents the core of the method-
ology we use to evaluate our predictive models. We could

consider that, for each individual configuration of parameters
p0 and p1, PARKERNEL generates kernels able to behave
significantly differently from those generated with a different
parameters couple.

Listing 1: PARKERNEL implementation
1 int i = blockIdx.x * blockDim.x + threadIdx.x;
2 . . .
3 int j = 0;
4 for(j = 0; j < N; j++) {
5 unsigned int f = 0;
6 int m = 0;
7 // compute/memory intensity
8 for (f = 0 ; f < p0 ; f++)
9 m += f + threadIdx.x;

10

11 s[threadIdx.x] = m;
12 // Branch divergence
13 if(i % p1 == 0) {
14 x1[i] += a[i*N+j] * y_1[j];
15 x2[i] += a[j*N+i] * y_2[j];
16 }
17 else{
18 x1[i] -= a[i*N+j] / y_1[j];
19 x2[i] -= a[j*N+i] / y_2[j];
20 }
21 }
22 x1[i] += s[threadIdx.x];

As shown in Listing 1, parameter p0 is used to define the
ratio of compute/memory instructions, while p1 determines the



amount of branch divergence within a single warp. Setting
p0 and p1 to 1 results in generating a kernel that behaves
just like the MVT kernel; low values of p0 generates more
memory-intensive kernels, and conversely, larger values gen-
erates more compute-intensive ones. Similarly, low values of
p1 result in little to no branch divergence, while high values
result in kernels that will be more frequently stalled due to
branch divergence. This is because as shown in Listing 1, the
conditional predicate in line 13 is based on the GPU thread
ID, hence potentially breaking the GPU’s lockstep model at
warp level.

In order to understand whether or not this approach to
generate validation kernels is able to reasonably cover the
output domain (i.e. all the possible slowdown values, Y ), we
plot both how the slowdown changes as we vary the two
parameters, keeping fixed at 7 the number of CPU interferents
(Figure 4), and the total slowdown distribution among all the
generated kernels on all the possible number of interferents
(Figure 5). We set p0 ∈ [1, 10, 20, 30, 40, 50, 75, 100, 125,
150, 175, 200, 250, 300, 350, 400, 500, 1000] and p1 ∈ [1, 3,
7, 9, 10, 12, 14, 17, 23, 30]. Considering these steps and ranges
and the number of interferents, we generate 180 different
versions of PARKERNEL and 1440 individual experiments
calculated by varying the number of interferents.

As shown in Figure 5, the distribution of slowdown cases
for PARKERNEL is able to cover a wider range of possible
slowdown values, and with less empty regions on the X axis
compared to the slowdown distribution for the 14 kernels
(Figure 3).

Fig. 4: Slowdown distribution of PARKERNEL depending on
p0 and p1.

C. Methodologies and Results

When dealing with predictive models in real-time systems, a
correctness margin has to be set. This is because it is unlikely
that the prediction will match the reference value down to
the very last significant digit. When presenting our results we
will then set this margin to an arbitrary 20% as it is in line
with both industrial and academic practice in many application

Fig. 5: Slowdown distribution of PARKERNEL.

domains for WCET estimation [35]–[37]. If a prediction error
is below 20% then it is in range (Fig. 7 and 6).

1) Support Vector machines for Regression - SVR: As
shown in Figure 6, we found the best configuration that has a
good performance on validation, with an average percentage
error of -4% and an absolute percentage error of 8.33%.
The lowest underestimation was -35.15%, while the maximum
overestimation was 16.29%. The SVR makes 770 overestima-
tions and 670 underestimations (Figure 7).

2) Random Forest Regression - RFR: As shown in Figure 6,
we found that the best configuration of Random Forest has an
average percentage error of -2.83% and an absolute percentage
error of 10.16%. The lowest underestimation was -43.09%,
while the maximum overestimation was 22.32%. The RFR
makes 866 overestimations and 574 underestimations (Figure
7).

3) Deep Neural Network - DeepNN: We found the optimal
configuration during the training phase, shown in Figure 8, to
be a neural network with 3 hidden layers, the first 2 of which
have twice the size of the input (46 neurons), and the last
hidden layer with a size equal to the input. As the final output
neuron, since a real value needs to be predicted, a linear neuron
is used to predict the value of slowdown. Dropout layers were
used at each layer to ensure the reliability of the results and
prevent the network from overfitting the training data. As
shown in Figure 6, the best DeepNN performs an average
percentage error of -3.30% and an absolute percentage error
of 9.29%. The lowest underestimation was -34.24%, while the
maximum overestimation was 13.46%. The DeepNN makes
777 overestimations and 663 underestimations (Figure 7).

4) Combined: The combined approach is a methodology
that combines the single predicted slowdown of SVR, RFR
and DeepNN by always taking the most pessimistic predic-
tion among the aforementioned methods. As known in the
literature combining different ML methods, as long as they
are independent, guarantees improved overall performance. In
our context, we can also introduce the bias related to interest
versus pessimistic prediction. As shown in Figure 6, despite a
0.86% increase in the absolute average error of the best of the
3 methods (SVR), using a combined approach decreases the
number of underestimations by 2% in the minimum percentage



underestimation values, and there is a normal distribution
centered around 0, resulting in 913 overestimations, 527 un-
derestimations and the in range is 1298 over 1440 (Figure
7), meaning that a 90% of the predictions fall within in the
correctness range of 0-20%.

Fig. 6: Prediction results.

Fig. 7: Underestimation and overestimation count from the
predictive models.

Fig. 8: The best configuration of the neural network .

VI. METRICS ANALYSIS

Since the predictive model described in the previous section
shows reasonable performance, we now move on to analyze
and interpret the importance of metrics in relation to the
kernels latency deterioration. For this purpose we used three
methodologies:

• Principal Component Analysis (PCA) [38] is a dimen-
sionality reduction technique that is used to transform
high-dimensional data into a smaller set of linearly

uncorrelated variables called principal components. The
principal components are ranked in order of their con-
tribution to the total variance of the data, with the first
principal component explaining the most variance. PCA
is commonly used to simplify complex datasets and to
visualize patterns in data.

• GINI importance is a measure of the importance of each
feature in a Random Forest model. It is based on the
Gini index, a measure of impurity used in decision tree
algorithms for the node splitting. The GINI importance of
a feature is calculated by randomly permuting the values
of that feature in the dataset and measuring the decrease
in Gini index. The greater the decrease in Gini index,
the more important the feature is considered. The GINI
importance is often used to identify the most important
features in a Random Forest model and to perform a
feature selection for further analysis.

• Spearman correlation factor, also known as Spearman’s
rank correlation coefficient, is a statistical measure that
quantifies the strength and direction of the relationship
between two variables. It is calculated by ranking the
values of each variable and then calculating the cor-
relation coefficient between their ranks. The Spearman
correlation factor is often used to measure the correlation
among variables that do not have a linear relationship
or that have non-normal distributions. It ranges from
[−1;+1], where a value of −1 indicates a perfect negative
correlation, 0 indicates no correlation, and +1 indicates
a perfect positive correlation. We use it to calculate the
non-linear correlation between each single metric and the
kernel slowdown caused by memory interference. For this
analysis we flag as most important those metrics that
present a Spearman coefficient ≥ 0, 21 or ≤ −0.21. 0.21
is the absolute average value calculated from the entire
correlation set.

For each of these methodologies we highlighted the metrics
with the highest correlations, i.e. by creating a set for each
method, with each set containing the largest 10 values accord-
ing to GINI, PCA and Spearman. After that, we trivially find
the intersection set among the three. In this intersection set, we
identified 5 metrics that are present in all the three sets, which
are related to the number of CPU-side interferents, stalls for
memory dependency, the proportion of warps per cycles, and
the Load Store Unit utilization. Then, we find the union among
the sets, by combining the individual top 10 of each analysis
methodology. By doing so, we identified 18 metrics that were
found to be the most influential using the different methods.
The final 18 metrics and the values from the methodologies
for analyzing the metric importance are reported in Table III.

To confirm the soundness of our approach in defining
metrics importance, we retrained the three predictive method-
ologies and combined them using the pessimistic method by
only considering the 18 metrics. Validation is then performed
in the same way as before, i.e using PARKERNEL generated
kernels. In this setting, the combined method produces a mean



TABLE III: Metrics that are more influential during slowdown prediction.

N° in Tab. II Metric Name PCA GINI Spearman
- Interferents nr (number of interferents by CPU side) 2.682 0.469 0.529

28 smsp warp issue stalled long scoreboard per warp active.pct 19.688 0.135 0.504

27 smsp warp issue stalled dispatch stall per warp active.pct +
smsp warp issue stalled misc per warp active.pct 11.630 0.095 -0.378

26 smsp warp issue stalled dispatch stall per warp active.pct 3.859 0.040 -0.378
25 smsp inst executed pipe lsu.avg.pct of peak sustained active 1.048 0.025 -0.343
7 lts t sectors.avg.pct of peak sustained elapsed - - 0.371
9 lts t sectors aperture sysmem op read.sum.per second - - 0.304

10 lts t sectors op read.sum.per second - - 0.301
4 l1tex t bytes pipe lsu mem global op st.sum.per second - - 0.286

12 lts t sectors op write.sum.per second - - 0.285
24 smsp inst executed op global ld.sum 2.168 0.022 -
22 lts t requests.sum - 0.018 -
22 lts t requests.min - 0.017 -
22 lts t requests.max - 0.016 -
6 lts t sector hit rate.pct 0.737 - -

19 lts t bytes.min 50.826 - -
21 lts t request hit rate.ratio 5.439 - -
23 smsp cycles active.avg.pct of peak sustained elapsed 1.458 0.022 -

and absolute error of 2.79% and 10.24%, respectively, with
an estimate of the minimum and maximum slowdown of -
32.21% and 21.95%, respectively, with 995 overestimates and
445 underestimates. Hence, the prediction quality compared
to the previous system remained almost the same as what we
reported in Section V. This result confirms and highlights that
these 18 metrics are the most important for making decisions
regarding the characterization of the behavior of GPU kernels
and CPU-side memory interference.

VII. CONCLUSION

This paper presented an analysis of the behavior of GPU
kernels under various memory-intensive CPU-side interference
conditions. Different ML methodologies such as SVR, RFR,
DeepNN, and a combined approach were used to predict
the slowdown for GPU kernels caused by intensive CPU-
side memory activity. The ML methodologies were trained
using fined grained profiling, made possible using the Nvidia
profiling tool ncu. Through the combined methodology, good
results were achieved with a mean and absolute error percent-
age of -0.19% and 9.19%, respectively. Moreover, through
the use of known dataset analysis methods such as PCA,
GINI, and Spearman, 18 out of 45 initial ncu metrics were
highlighted as the most influential predictors. This is then
confirmed by re-training our proposed predictive model by
restricting the feature set to only the 18 selected metrics.
Such a predictive model trained with the restricted features
produces an average and absolute percentage error of +2.79%
and 10.24% respectively.

Such a combined predictive model can be used to ana-
lyze the behavior of boards under different computational
loads between CPU and GPU, hence the potential to become
a necessary tool for response time analysis and memory
interference-aware scheduling.

As for future work we argue that the key metrics found with
our proposed approach can be used to extend the current state-
of-the-art heterogeneous task models in real time literature,

e.g. DAG-based task models [39], [40]. These models are
characterized by jobs as connected nodes of a directed acyclic
graph: to each node, a set of timing parameters are associated,
e.g. period, WCET, deadline, offset . . .. In heterogeneous
DAGs each node can then be flagged to run on specific
accelerators; this is where our findings come into play when
extending these models: the key metrics detected as memory-
interference predictors can be used to further enrich the
associated parameters to each node, hence allowing the system
engineer to account for memory interference when deploying
tasksets on real HW.
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