
Vision-based multi-size object positioning

Abstract—Accurate object positioning is critical in many indus-
trial manufacturing applications. The execution time and precision
of the object positioning task have a significant impact on the
overall performance and throughput, especially in cost-sensitive
industries such as semiconductor manufacturing. In addition, the
object positioning algorithm must adapt to changes in object
size, features, and environmental conditions in real-time. While
traditional sensors struggle to cope with dynamic conditions,
vision-based perception is more adaptable and robust. Vision-
based perception can capture and analyze visual information
by using cameras and image processing algorithms, providing a
robust way to locate objects in dynamic environments. However,
classical perception algorithms based on vision cannot handle
objects with different characteristics, and modern object detectors
that rely on deep neural networks struggle to adapt to image
sizes, resulting in unnecessary computations. To address these
challenges, this paper proposes an approach for designing a
branched multi-input deep neural network (DNN) that considers
variations in input image sizes to adapt the input branches.
In essence, the proposed DNN reduces the computation time
for images with lower dimensions. To validate the proposed
approach, an IC dataset is created that represents the variations
in object sizes as seen in semiconductor manufacturing machines.
Depending on the choice of input branches, the average inference
time is reduced by over 30% with a slight gain in detection
accuracy.

Index Terms—Object positioning, Vision-based sensing, Deep
neural networks, Semiconductor manufacturing

I. INTRODUCTION

The critical task of object positioning in automated man-
ufacturing and assembly systems is performed in two main
stages. First, the system detects the position of the object.
Second, it computes the required motion to align the object with
the predetermined reference position. Typically sensors like
potentiometric sensors, Hall effect sensors, and linear encoders
are used for detecting the position of an object. However,
these sensors are not always accurate and are susceptible
to errors. This happens mainly due to the thermal [1], and
vibration effects [2] generated in the system. As a result, the
system is not able to detect the object precisely, and the object
gets misaligned with the reference position resulting in bad
product quality. To avoid the misalignment issue, the machine is
halted, or the bad product is discarded. Both of these outcomes
adversely affect the production throughput of these machines.

With the advancements in deep learning and computer vision,
an alternative approach to tracking object positions is emerging.
This involves capturing an image around the region of interest,
resulting in images of different dimensions for different product
sizes, e.g. in the case of the IC (Integrated Circuit) dataset
shown in Fig. 1, the product dimension ranges from 2 mm to
60 mm. Based on pre-determined references on the ground,
the object’s position is estimated using Deep Neural Networks.
This estimation can be used directly to compute the required

motion or fused with the position estimation from other sensors
to make the sensing reliable. The precision of the vision-based
estimation of position heavily depends on the resolution of
the camera and the errors introduced in processing the image
to localize the object, primarily because of transformations
performed for resizing the input image. This error also gets
added to the estimated motion for aligning the object. There-
fore, the use of state-of-the-art deep neural networks for object
localization in such applications is often not feasible as they are
trained on fixed input dimensions and thus, the images have to
be either scaled down, which results in lost precision or padded
up, resulting in unnecessary computations hence reducing the
throughput.
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Fig. 1. Variation of product dimensions in IC dataset

Contributions: In this paper, we propose an approach to
design branched multi-input deep neural networks for multi-
size object localization. The number of input branches and
dimensions are determined based on the expected variations
in the input image dimensions. Additionally, a small common
backbone network is used for the predictions. The images
with higher dimensions pass through more convolutional layers
and vice-versa. The effectiveness of the proposed model is
demonstrated by considering the object positioning task in
semiconductor manufacturing, although it is equally relevant
and applicable in many other performance-demanding time-
constrained domains. The model is evaluated with the help of
the IC dataset, generated from the PCB-DSLR dataset [3]. For
the IC dataset, three cases are discussed, Case 1 (baseline) with
a single input branch, and Case 2 and Case 3 with two and three
input branches, respectively. Our results show that Case 2 has
a 25% gain in inference time over the baseline, whereas Case 3
gains over 30%. The detection quality of all three cases remains
similar with a slight improvement in Case 2 and Case 3 over
the baseline.
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Fig. 2. (A) Simplified setup of the wafer stage in a semiconductor packaging platform with a camera mounted on top and linear encoder for reading the wafer
table position. (B) The top view of the wafer table and targeted reference position where the die needs to be positioned.

II. SEMICONDUCTOR MANUFACTURING

For the scope of this paper, object positioning in semiconduc-
tor assembly machines [4] is considered. Semiconductor man-
ufacturing and packaging involve two primary phases: front-
end (semiconductor wafer production) and back-end (assembly
and packaging). The former involves several process steps like
lithography and sputter deposition, which convert silicon into
a processed semiconductor wafer, followed by pre-assembly
steps like grinding, taping, and sawing. The wafer is ground
to the required thickness and then taped to an adhesive foil
in a flexible frame carrier (FFC). The wafer sawing cuts the
silicon wafer into individual components called dies or chips.
Subsequently, in the back end, the dies are attached to a
substrate or package, followed by wire bonding and molding.
Post-assembly steps involve trim and form, final test, and
packing of the semiconductor product. An assembly machine
is tasked with picking each semiconductor die or substrate or
the packaged IC at different stages of production. A typical
machine like this has to handle products of different sizes. For
semiconductor dies, it ranges from 200 µm to 1mm, and in
the case of the IC dataset, it ranges from 2 mm to 60 mm.
Furthermore, these machines are known to have a throughput of
70,000 units per hour (UPH), i.e. producing a packaged product
every (60 × 60 × 1000)/70, 000 ≈ 50 ms, which should be
reduced further in order to improve the throughput.

A simplified setup of the wafer stage of a semiconductor
manufacturing platform is shown in Fig. 2, where a camera is
mounted on top to improve the positioning accuracy. Linear
encoders are used to sense the position of the wafer table from
which the position of the die is then estimated. This introduces
many errors in the position estimations due to disturbances
such as mechanical misalignment, material warping, friction,
and vibration in the system. By utilizing the visual feedback
from the camera, the controller can compensate for these errors
and correctly align the dies to the pre-determined references.
In order to practically incorporate the vision feedback with the
above-mentioned system, the following challenges need to be
addressed:

C1 Execution Time: For the production throughput of
70,000 UPH the machine cycle is 50 ms and the
inference time for the object localizer should be

smaller than 20 ms. To further improve the production
throughput the inference time should be as small as
possible. Note that, as the DNN has to be used in a
control loop, feedback needs to be obtained in each
image frame and batch processing is not feasible.

C2 Multi-size Products: As the semiconductor manufac-
turing machine packages a wide range of products
with varying sizes, the vision feedback mechanism
should be able to efficiently detect ICs with sizes
ranging from 2 mm to 60 mm.

C3 Object Detection Precision: The precision require-
ment for the object localizer varies at different stages
of the assembly process. It also depends on the res-
olution of the camera, to localize the semiconductor
dies higher resolution is needed as compared to the
ICs. A prediction with an error less than 10 pixels is
acceptable at all stages.

III. RELATED WORK

Object detection and localization using computer vision
algorithms have been studied for many years, with methods
such as Hough transform [5] and template matching [6] being
popular in classical computer vision literature. Hough transform
is an iterative approach that extracts high-level information
from an image and uses predetermined thresholds for detecting
objects, making it less reliable in practical applications. Tem-
plate matching uses a template image to find the object in the
image, but it is not robust and not size invariant, requiring
the template image to be resized to match the object size
in the image. Recently, DNNs have been utilized to perform
object localization. When passing the image through the DNN,
a feature map is generated and bounding box regression is
used to locate objects from the feature map. These methods
can be categorized into single-shot and multiple-shot detectors.
Single-shot detectors such as SSD [7] and YOLO [8] are
computationally efficient as they perform object detection by
processing the entire image once. These detectors divide the
input image into a grid of cells, and each cell predicts the
location, size, and confidence score of the object present in
that cell. However, a major limitation of these detectors is their
inability to handle images of varying sizes. Since the grid cells
are fixed, the detectors struggle to detect objects that are smaller
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Fig. 3. Stages in proposed branched multi-input DNN
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Fig. 4. Case 1: Baseline model with a single input branch with input dimension (640, 640)

or larger than the grid cells. Multiple-shot detectors, such as R-
CNN [9] and its variants, use region proposal networks (RPNs)
to propose regions of interest in the image. These regions are
then fed to a classifier to determine whether they contain an
object or not. While this approach achieves higher detection
accuracy, it is computationally expensive and requires scanning
the entire image multiple times with different scale windows. A
model for object tracking is proposed in [10] it uses a branched
input structure for dealing with images containing an object of
different sizes, the number of branches and their dimensions
are chosen without considering the variations of the image sizes
which will still result in unnecessary computations when small
images have to be padded up heavily. Furthermore, the final
predictions are estimated by dividing feature maps into grids
and using manually set thresholds to highlight key areas in the
feature map.

IV. BRANCHED MULTI-INPUT DEEP NEURAL NETWORK

The proposed DNN architecture consists of a branched input
structure followed by a common backbone neural network as
shown in Fig. 3. The input branches are used to scale down
the feature map while retaining some high-level information.
The backbone is the common subsequent network connected
to all the input branches and predicts the coordinates of the
center of the object (x, y). The Branch Selection block checks
the dimensions of the input image and passes it to one of the
input branches. The Branched Input Layers provides multiple
entry points for the images to the DNN, hence varying the
amount of computation required to extract high-level features
at the early stage of the model. The different convolution blocks
used to design the input branches and the backbone are listed in
Table I. The Conv2 layers, which are used in the input branches,
could be seen as an alternative to the typical pooling layers,
which are used to scale down the feature maps, but with a key
difference i.e. Conv2 layers also retain some information from
the feature map during the training process. Conv1 and Conv3
layers are identical (3,3) convolutional layers with stride (1,1)
where Conv3 also has an additional (2,2) max pooling layer
attached to it.
Designing the input branches: Having multiple input branches
allows for faster inference for smaller images and slower

TABLE I
CONV LAYERS USED IN THE MODEL

Name Filter Stride Max Pooling
Conv1 (3,3) (1,1) -
Conv2 (2,2) (2,2) -
Conv3 (3,3) (1,1) (2,2)

inference time for large images. To optimize the model for
optimal average inference time, the dimensions of the input
branches are chosen in such a way that the number of images
is distributed equally among all branches. This is achieved by
generating equal height histograms for image dimensions in
the dataset by following the steps mentioned in Algorithm 1.
The binEdges function takes the distributions (d) of image
height (h) and width (w) and returns the nbin+1 number of
bin edges for both h, and w. The dimensions for input branches
are decided by taking the maximum of individual bin edges
values among h, and w for each branch.

Algorithm 1 Compute branch dimensions
1: Input:d ∈ [h,w], nbin
2: Output:branches
3: function BINEDGES(d, nbin)
4: npt← length(d)
5: bin edge pos← linspace(0, npt, nbin+ 1)
6: sort(d)
7: for i ∈ 1 to nbin do
8: bin edges[i]← interpolate(d, bin edge pos[i])
9: end for

10: return bin edges
11: end function
12: branches = max(BINEDGES(h, nbin),BINEDGES(w, nbin))

In Algorithm 1, linesapce (line 5) creates an array with
nbin+1 equally spaced samples from 0 to npt. sort (line 6)
is used to sort the input data d. The for loop (line 7-9)
uses interpolate (line 7) function to perform linear interpolation
on the bin edge positions and find the corresponding values in
the sorted array. This step essentially maps the positions of the
bin edges to the actual data values.

Branch selection checks the dimension of the input image
and passes the image to the branch with the closest bin edges
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Fig. 5. Case 2: Model with 2 input branches, with input dimensions (640,640) and (180, 180)
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Fig. 6. Case 3: Model with 3 input branches, with input dimensions (640,640), (220,220) and (164,164)

value. bin edges essentially gives the bounds to split the
training data, but the test data may still contain bigger images
thus an additional 5% of pixels are added to the bin edges to
accommodate slightly bigger images. Examples of models with
two and three input branches are shown in Fig. 5 and Fig. 6
respectively. In both cases, all the input branches merge at the
backbone.

V. IC DATASET

Fig. 7. Data collection setup for PCB-DSLR Dataset [3]

Though an industrial dataset for die alignment is available,
it is proprietary and not available for public use. Therefore, a
publicly available dataset is chosen for evaluating the proposed
method. The location predicted by the object localizer has to be
used for aligning the IC, the dataset should have a conversion
factor to convert the distances from pixels to physical distance
units. The PCB-DSLR dataset [3] satisfies the above-mentioned

PCB-DSLR Dataset IC Dataset

Fig. 8. An image from PCB-DSLR dataset and generated images for IC dataset

condition. The PCB-DSLR dataset consists of multiple top-
down images of 165 PCBs, resulting in 748 images in total.
This includes multiple images captured by physically rotating
the PCBs while keeping the distance between the camera and
the PCB constant. Fig. 7 shows the setups used to collect these
images. Since the distance between the camera and the PCBs is
constant, all the images have a fixed resolution in pixels. Each
image in PCB-DSLR dataset has a resolution of 4928 × 3280
(about 220 pixels per inch). The conversion factor of 220 PPI
allows the conversion of distances from pixels to millimeters.
The labels in the dataset contain the location of all the ICs
present on the PCBs in the form of oriented bounding boxes,



which are used to generate the IC dataset of 9,313 images.
This is done by generating random crops around the ICs (see
Fig. 8) by using the bounding box labels. The IC dataset is
used to train and evaluate the performance of the models.

VI. TRAINING AND BRANCHED INPUT LAYERS

A set of 7,313 images from the generated dataset were
used to train the model. Each image in the training set is
labeled with the (x̄, ȳ) coordinates of the center of the IC.
The Euclidean distance between the ground truth coordinates
(x̄, ȳ) and predicted center coordinates (x, y) is used as the loss
function. This helps the model to learn to predict the location
of the center as close as possible to the ground truth.

loss =
√
(x̄− x)2 + (ȳ − y)2 (1)

For each forward pass in the training step, the input branch
is selected according to the size of the image, and the corre-
sponding loss is computed using Eq.(1). Using the loss, the
weights are updated for the selected input branch along with
the common layers in the backbone. Using the loss and the
size of the image, the weights were updated in the respective
branched input layers and the common layers. A total of 7,313
images were used for training the model, while a 1:1 split was
used in the remaining 2,000 images for testing and validation.
TensorFlow [11] is the choice of deep learning framework. All
the models were trained using a single NVIDIA GeForce RTX
2080-Ti GPU.
The variations in the input image dimensions are shown in
Fig. 9. The distribution of height and width of the images
over the dataset is close, i.e. most of the images are close to
being square while the individual ICs may have a rectangular
shape, evident from Fig. 1. The biggest image has a dimension
of (609, 636), so the input for the baseline case i.e. Case 1
with a single input branch is chosen to be (640, 640). Before
inference, the image is padded up to the branch dimensions by
the branch selection block. Using the procedure mentioned in
Algorithm 1, equal height histograms for Case 2 and Case 3 are
generated with two and three input branches, respectively. From
Fig. 10, the input dimension for the two branches are chosen as
(640, 640) and (164, 164), and similarly from Fig. 11, the input
dimensions for Case 3 are chosen as (640, 640), (220, 220) and
(164, 164). Table II summarises the input image dimensions for
each branch in all three cases.

TABLE II
INPUT DIMENSIONS FOR ALL CASES

Case Input Dimensions
Branch 1 Branch 2 Branch 3

1 (640, 640) - -
2 (640, 640) (180, 180) -
3 (640, 640) (220, 220) (164, 164)

VII. INFERENCE RESULTS

As mentioned in Section IV there could be many possible
models by varying the number of input branches. Since the
training dataset contains 7,313 images, in order to ensure that
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each input layer is trained on sufficient data, only cases with
one to three input branches are considered. Case 1: For the
baseline single branch model, the input dimension is chosen
to be (640, 640) which is bigger than the dimension of all the
images in the dataset.
Case 2: For the two branch case, the input dimensions are
(640, 640) and (180, 180) with 3,629 and 3,684 images in
each branch respectively from the training set and 495 and 595
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TABLE III
AVERAGE LOSS AND INFERENCE TIME FOR ALL CASES

Case Average loss
(pixels)

Average loss
(mm)

Average inference
time (ms)

1 7.922 0.906 16.578
2 7.439 0.851 11.516
3 6.492 0.742 9.948

images from the test set.
Case 3: For the three branch case, in addition to the dimensions
used in Case 2, an extra branch is added with dimension (220,
220).
The average losses and inference times for all three cases are
shown in Table III. The gain in inference time is much more
significant in Case 2 and Case 3 as more input branches are
added. The average loss of models in Case 2 and Case 3 is
similar and much better than in Case 1, as the smaller images
in Case 1 are heavily padded, leaving the model with fewer
features to learn from. Table IV shows the further breakdown
of inference time at different stages of all the models. These
times were obtained by passing 10,000 dummy images of varied
dimension through each branch. This was done to get a better
indication of the average inference time over a large sample as
the test set in the IC dataset is quite small and skewed towards
some branches. The gain in average inference time is significant
in Case 3 over the baseline case due to the introduction of
additional branch with a smaller input dimension at the point
where the data is densely populated.

TABLE IV
INFERENCE TIME BREAKDOWN

Case Branch Selection
(µs) Branch Input Branch

(ms)
Backbone

(ms)
1 - 1 9.178 6.353
2 0.995 2 1.615 5.103

1.142 1 9.964 6.431
3 0.988 3 1.547 5.587

1.126 2 2.694 5.561
1.413 1 9.118 6.590
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Fig. 12. Inference time breakdown as shown in Table IV

VIII. CONCLUSIONS

In this paper, we presented a flexible deep neural network
design approach for object positioning tasks in industrial man-
ufacturing applications, specifically in semiconductor manufac-
turing. Our proposed branched multi-input DNN considers the
input image dimensions before the inference, resulting in faster
inference speeds and improved accuracy. By incorporating a
branched input structure, the model adapts to varying input
dimensions, thus reducing unnecessary computations. As a
typical semiconductor assembly machine is expected to pack-
age a large range of products with different dimensions, the
effectiveness of our approach was demonstrated through its
application in semiconductor manufacturing, where accurate
object positioning is essential for maintaining product quality
and throughput. This is done with the help of the IC dataset
which contains images with varying dimensions. In summary,
the proposed flexible deep neural network design offers a signif-
icant improvement over traditional sensors and existing object
detectors in terms of adaptability, reliability, and performance.
It addresses the challenges in(C1: Execution Time, C2: Multi-
size Products and C3: Detection Precision) that are typically
posed when incorporating the DNNs into a control loop. Future
work may explore the integration of our model with other
sensor fusion techniques to further enhance object positioning
accuracy and reliability in industrial applications.
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